R/plotCorrStructure.R

Defines functions plotCorrStructure

Documented in plotCorrStructure

# Gabriel Hoffman
# March 4, 2015

#' plotCorrStructure
#'
#' Plot correlation structure of a gene based on random effects
#'
#' @param fit linear mixed model fit of a gene produced by lmer() or fitVarPartModel()
#' @param varNames variables in the metadata for which the correlation structure should be shown.  Variables must be random effects
#' @param reorder how to reorder the rows/columns of the correlation matrix.  reorder=FALSE gives no reorder.  reorder=TRUE reorders based on hclust.  reorder can also be an array of indices to reorder the samples manually
#' @param pal color palette
#' @param hclust.method clustering methods for hclust
#'
#' @return
#' Image of correlation structure between each pair of experiments for a single gene
#'
#' @examples
#'
#' # load library
#' # library(variancePartition)
#'
#' library(BiocParallel)
#'
#' # load simulated data:
#' data(varPartData)
#'
#' # specify formula
#' form <- ~ Age + (1 | Individual) + (1 | Tissue)
#'
#' # fit and return linear mixed models for each gene
#' fitList <- fitVarPartModel(geneExpr[1:10, ], form, info)
#'
#' # Focus on the first gene
#' fit <- fitList[[1]]
#'
#' # plot correlation sturcture based on Individual, reordering samples with hclust
#' plotCorrStructure(fit, "Individual")
#'
#' # don't reorder
#' plotCorrStructure(fit, "Individual", reorder = FALSE)
#'
#' # plot correlation sturcture based on Tissue, reordering samples with hclust
#' plotCorrStructure(fit, "Tissue")
#'
#' # don't reorder
#' plotCorrStructure(fit, "Tissue", FALSE)
#'
#' # plot correlation structure based on all random effects
#' # reorder manually by Tissue and Individual
#' idx <- order(info$Tissue, info$Individual)
#' plotCorrStructure(fit, reorder = idx)
#'
#' # plot correlation structure based on all random effects
#' # reorder manually by Individual, then Tissue
#' idx <- order(info$Individual, info$Tissue)
#' plotCorrStructure(fit, reorder = idx)
#'
#' @export
plotCorrStructure <- function(fit, varNames = names(coef(fit)), reorder = TRUE,
                              pal = colorRampPalette(c("white", "red", "darkred")), hclust.method = "complete") {
  if (!inherits(fit, "lmerMod")) {
    stop("fit must be a linear mixed model fit of class lmerMod")
  }

  # if( isVaryingCoefficientModel( fit) ){
  # 	stop("Plot does not work with varying coefficient model")
  # }

  # If any variable names are not in fit
  if (any(!varNames %in% names(coef(fit)))) {
    # indeces of variables not found in model fit
    idx <- which(!varNames %in% names(coef(fit)))

    stop(paste("Variables are not found in model fit:", paste(varNames[idx], collapse = ", ")))
  }

  # get correlation terms
  vp <- calcVarPart(fit)

  # get structure of study design
  sigG <- pbkrtest::get_SigmaG(fit)

  # get variable names
  ids <- names(coef(fit))

  # store correlation matrix for each variable
  C <- list()
  SideColors <- c()
  Sigma <- 0

  # get the metadata from the model fit
  data <- fit@frame

  # for each desired variable compute the correlation matrix
  for (key in varNames) {
    # get the variable index
    i <- which(key == ids)

    # multiply the sparse matrix by the correlation value
    C[[i]] <- sigG$G[[i]] * vp[[key]]

    # sum up with previous correlation matrix
    Sigma <- Sigma + C[[i]]

    # convert the relevant variable to a factor
    variable <- factor(data[, ids[i]])

    # color the variable levels and cbind them
    sideColset <- ggColorHue(nlevels(variable))
    SideColors <- cbind(SideColors, sideColset[variable])
  }
  colnames(SideColors) <- varNames
  diag(Sigma) <- 1 # set diagonals to 1

  main <- paste(varNames, collapse = " + ")


  if (is.logical(reorder) && reorder) {
    # reorder the samples by hclust
    hcr <- hclust(as.dist(1 - as.matrix(Sigma)), method = hclust.method)
    ddr <- as.dendrogram(hcr)
    ddr <- stats::reorder(ddr, 1)
    idx <- order.dendrogram(ddr)
  } else if (length(reorder) == nrow(Sigma)) {
    # reorder based on pre-specified order
    idx <- reorder
  } else {
    # don't reorder
    idx <- 1:ncol(Sigma)
  }

  heatmap.3(as.matrix(Sigma)[idx, idx], dendrogram = "none", col = pal(100), trace = "none", tracecol = FALSE, symm = TRUE, ColSideColors = SideColors[idx, , drop = FALSE], RowSideColors = t(SideColors[idx, ncol(SideColors):1]), keysize = 1, key.title = "", density.info = "none", KeyValueName = "correlation", main = main, labRow = "", labCol = "", margins = c(2, 2), Rowv = FALSE, Colv = FALSE, NumColSideColors = ncol(SideColors) * .5, NumRowSideColors = ncol(SideColors) * .5)
}





# library(variancePartition)


# source("~/workspace/Bioconductor/variancePartition/R/heatmap.R")
GabrielHoffman/variancePartition documentation built on Jan. 6, 2025, 6:01 a.m.