R/canCorPairs.R

Defines functions canCorPairs

Documented in canCorPairs

# Gabriel Hoffman
# April 18, 2016

#' canCorPairs
#'
#' Assess correlation between all pairs of variables in a formula
#'
#' @param formula standard additive linear model formula (doesn't support random effects currently, so just change the syntax)
#' @param data data.frame with the data for the variables in the formula
#' @param showWarnings default to true
#'
#' @details
#' Canonical Correlation Analysis (CCA) is similar to correlation between two vectors, except that CCA can accommodate matricies as well.  For a pair of variables, canCorPairs assesses the degree to which they co-vary and contain the same information.  Variables in the formula can be a continuous variable or a discrete variable expanded to a matrix (which is done in the backend of a regression model).  For a pair of variables, canCorPairs uses CCA to compute the correlation between these variables and returns the pairwise correlation matrix.
#'
#' Statistically, let rho be the array of correlation values returned by the standard R function cancor to compute CCA.  \code{canCorPairs()} returns \code{sqrt(mean(rho^2))}, which is the fraction of the maximum possible correlation.  When comparing a two vectors, or a vector and a matrix, this gives the save value as the absolute correlation.  When comparing two sets of categorical variables (i.e. expanded to two matricies), this is equivalent to Cramer's V statistic.
#'
#' Note that CCA returns correlation values between 0 and 1.
#'
#' @return
#' Matrix of correlation values between all pairs of variables.
#'
#' @examples
#'
#' # load library
#' # library(variancePartition)
#'
#' # load simulated data:
#' data(varPartData)
#'
#' # specify formula
#' form <- ~ Individual + Tissue + Batch + Age + Height
#'
#' # Compute Canonical Correlation Analysis (CCA)
#' # between all pairs of variables
#' # returns absolute correlation value
#' C <- canCorPairs(form, info)
#'
#' # Plot correlation matrix
#' plotCorrMatrix(C)
#'
#' @importFrom stats model.matrix.lm cancor
#' @importFrom utils combn
#' @importFrom lme4 subbars
#' @export
canCorPairs <- function(formula, data, showWarnings = TRUE) {
  # convert to formula
  formula <- stats::as.formula(formula)

  # convert random effects to fixed effects
  formula <- subbars(formula)

  if (.isMixedModelFormula(formula)) {
    stop("Invalid formula.\nSuggestion: this function does not handle random effects.\nUse ~ x instead of ~ (1|x) in formula\nBut may be due to other issue")
  }

  # keep rows even if they have NA's
  X <- model.matrix.lm(formula, data, na.action = "na.pass")

  varLabels <- attr(terms(formula), "term.labels")

  if (length(varLabels) < 2) {
    stop("Must include at least 2 variables in the formula")
  }

  # get grouping
  idx <- attr(X, "assign")

  variableList <- list()

  # extract data
  for (i in unique(idx)) {
    if (i == 0) next
    variableList[[varLabels[i]]] <- X[, idx == i, drop = FALSE]
  }

  # Check that variables in formula are not constant
  checkNames <- names(which(sapply(variableList, sd) == 0))
  if (length(checkNames) != 0) {
    stop(paste("These variables have zero variance so cannot be analyzed:\n", paste(checkNames, collapse = ", ")))
  }

  C <- matrix(NA, length(varLabels), length(varLabels))
  colnames(C) <- varLabels
  rownames(C) <- varLabels
  diag(C) <- 1

  pairs <- combn(varLabels, 2)

  colinear_set <- c()

  for (i in 1:ncol(pairs)) {
    key1 <- pairs[1, i]
    key2 <- pairs[2, i]

    value <- tryCatch(
      {
        # keep only rows with no NA's
        keep1 <- apply(variableList[[key1]], 1, function(x) !any(is.na(x)))
        keep2 <- apply(variableList[[key2]], 1, function(x) !any(is.na(x)))
        keep <- keep1 & keep2

        fit <- cancor(variableList[[key1]][keep, , drop = FALSE], variableList[[key2]][keep, , drop = FALSE])
        sqrt(mean(fit$cor^2))
      },
      error = function(e) {
        NA
      }
    )

    C[key1, key2] <- value
    C[key2, key1] <- value

    if (showWarnings & !is.na(value) & (value > .999)) {
      colinear_set <- c(colinear_set, paste(key1, "and", key2))
    }
  }

  if (length(colinear_set) > 0) {
    warning("Regression model may be problematic.\nHigh colinearity between variables:\n", paste(paste0("  ", colinear_set), collapse = "\n"))
  }

  return(C)
}
GabrielHoffman/variancePartition documentation built on Jan. 6, 2025, 6:01 a.m.