R/stackAssays.R

Defines functions stackAssays

Documented in stackAssays

# Gabriel Hoffman
# Nov 16, 2023

#' Stack assays from pseudobulk
#'
#' Stack assays from pseudobulk to perform analysis across cell types
#'
#' @param pb pseudobulk \code{SingleCellExperiment} from \code{aggregateToPseudoBulk()}
#' @param assays array of assay names to include in analysis. Defaults to \code{assayNames(pb)}
#'
#' @return pseudobulk \code{SingleCellExperiment} cbind'ing expression values and rbind'ing colData.  The column \code{stackedAssay} in \code{colData()} stores the assay information of the stacked data.
#'
#' @examples
#' library(muscat)
#' library(SingleCellExperiment)
#'
#' data(example_sce)
#'
#' # create pseudobulk for each sample and cell cluster
#' pb <- aggregateToPseudoBulk(example_sce,
#'   assay = "counts",
#'   cluster_id = "cluster_id",
#'   sample_id = "sample_id",
#'   verbose = FALSE
#' )
#'
#' # Stack assays for joint analysis
#' pb.stack <- stackAssays(pb)
#'
#' # voom-style normalization
#' # assay (i.e. cell type) can now be included as a covariate
#' res.proc <- processAssays(pb.stack, ~ group_id + stackedAssay)
#'
#' # variance partitioning analysis
#' vp <- fitVarPart(res.proc, ~ group_id + stackedAssay)
#'
#' # Summarize variance fractions across cell types
#' plotVarPart(sortCols(vp))
#'
#' # Interaction analysis allows group_id
#' # to have a different effect within each stacedAssay
#' vp2 <- fitVarPart(res.proc, ~ group_id * stackedAssay)
#'
#' plotVarPart(sortCols(vp2))
#'
#' # Interaction model using random effects
#' form <- ~ (1 | group_id) + (1 | stackedAssay) + (1 | group_id:stackedAssay)
#' #
#' @importFrom SummarizedExperiment assayNames<-
#' @importFrom rlang sym
#' @importFrom S4Vectors metadata metadata<-
#' @importFrom dplyr rename inner_join
#' @export
stackAssays <- function(pb, assays = assayNames(pb)) {
  stopifnot(is(pb, "SingleCellExperiment"))

  # cbind assays
  counts <- lapply(assays, function(x) {
    y <- assay(pb, x)

    colnames(y) <- paste(x, colnames(y), sep = "_")
    y
  })
  counts <- do.call(cbind, counts)

  # rbind colData
  info <- lapply(assays, function(x) {
    info <- colData(pb)
    info$stackedAssay <- x
    rownames(info) <- paste(x, rownames(info), sep = "_")

    info
  })
  info <- do.call(rbind, info)

  # add metadata?

  # cell counts
  ids <- names(int_colData(pb)$n_cells)
  grd <- expand.grid(assay = assays, id = ids)
  rownames(grd) <- paste(grd$assay, grd$id, sep = "_")

  ncell.lst <- lapply(seq(nrow(grd)), function(i) {
    id <- as.character(grd$id[i])
    ct <- as.character(grd$assay[i])

    count <- int_colData(pb)$n_cells[[id]][ct]

    names(count) <- "stacked"
    count
  })
  names(ncell.lst) <- rownames(grd)

  # create SingleCellExperiment
  pb.stack <- SingleCellExperiment(
    assays = list(counts = counts),
    colData = info
  )
  assayNames(pb.stack) <- "stacked"

  # include cell count data
  int_colData(pb.stack)$n_cells <- ncell.lst[colnames(pb.stack)]

  # metadata
  # agg_pars
  metadata(pb.stack)$agg_pars <- metadata(pb)$agg_pars

  # aggr_means
  # create structure, but don't populate values
  df <- grd[colnames(pb.stack), , drop = FALSE] %>%
    as_tibble()
  key <- metadata(pb.stack)$agg_pars$by
  df[[key[1]]] <- "stacked"
  df[[key[2]]] <- rownames(grd)

  # get metadata, joint with df
  by <- metadata(pb)$agg_pars$by
  df2 <- metadata(pb)$aggr_means %>%
    rename(
      assay = sym(by[1]),
      id = sym(by[2])
    )

  metadata(pb.stack)$aggr_means <- inner_join(df, df2, by = c("assay", "id"))

  pb.stack
}
GabrielHoffman/dreamlet documentation built on Nov. 23, 2024, 12:28 a.m.