plotVoom | R Documentation |
Plot voom curves from each cell type
plotVoom(x, ncol = 3, alpha = 0.5, ...)
## S4 method for signature 'dreamletProcessedData'
plotVoom(x, ncol = 3, alpha = 0.5, assays = names(x))
## S4 method for signature 'EList'
plotVoom(x, ncol = 3, alpha = 0.5)
x |
dreamletProcessedData |
ncol |
number of columns in the plot |
alpha |
transparency of points |
... |
other arguments |
assays |
which assays to plot |
Plot of mean-variance trend
library(muscat)
library(SingleCellExperiment)
data(example_sce)
# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
assay = "counts",
cluster_id = "cluster_id",
sample_id = "sample_id",
verbose = FALSE
)
# voom-style normalization
res.proc <- processAssays(pb, ~group_id)
# Show mean-variance trend from voom
plotVoom(res.proc)
# plot for first two cell types
plotVoom(res.proc[1:2])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.