#' Draw a heatmap
#'
#' @param tool
#' @param fc_cutoff
#' @param name
#' @param method The agglomeration method to be used: \code{"euclidean",
#' "maximum", "manhattan", "canberra", "binary", "pearson", "abspearson",
#' "correlation", "abscorrelation", "spearman" or "kendall"}. The default is
#' \code{"euclidean"}. More details about \code{method} argument in
#' \code{amap} package \link{Dist} \code{method} argument.
#' @param pair_name A character string indicating the pair name to be used. When
#' there are only two groups the default is \code{"G2_over_G1"}
#' @param raw_values A logical value. If \code{"TRUE"} the expression values are
#' going to be converted to Z-Score before draw the heat map.
#' @param width,height,res,unit,image_format
#' @param env
#' @param scale_method A character string indicating which method of scale
#' should
#' be used: \code{"none"}, \code{"row"}, \code{"column"}. The default is
#' \code{"row"}. More details about \code{scale_method} argument in
#' \link{heatmap} \code{scale} argument.
#' @param outer_margins A numerical vector of the form c(bottom, left, top,
#' right) giving the outer margins measured in lines of text. The default is
#' no outer margins, i.e \code{"c(0,0,0,0)"}. Note: This argument is only
#' used 'when \code{"lab_row"} and \code{"lab_col"} are set.
#' @param cex_col,cex_row A numerical value giving the amount by which
#' \code{"lab_row"} and \code{"lab_col"} should be modified relative to the
#' default size.
#' @param degree The \code{"lab_col"} rotation in degrees. The default value is
#' 45 degrees.
#' @param lab_row,lab_col A logical value. If \code{"TRUE"} it is displayed row
#' names (\code{"lab_row"}) and col names (\code{"lab_col"}). The default is
#' \code{"FALSE"} for both, in order to kepp the plot clean.
#' @inheritParams dea_ebseq
#' @inheritParams concatenate_exon
#' @inheritParams groups_identification_mclust
#'
#' @return a heat map image.
#' @export
#'
#' @importFrom gplots colorpanel
#' @importFrom RColorBrewer brewer.pal
#' @importFrom amap Dist
#'
#' @examples
#' library(DOAGDC)
#'
#' # data already downloaded using the 'download_gdc' function
#' concatenate_expression("gene",
#' name = "HIF3A",
#' data_base = "legacy",
#' tumor = "CHOL",
#' work_dir = "~/Desktop"
#' )
#'
#' # separating gene HIF3A expression data patients in two groups
#' groups_identification_mclust("gene", 2,
#' name = "HIF3A",
#' modelName = "E",
#' env = CHOL_LEGACY_gene_tumor_data,
#' tumor = "CHOL"
#' )
#'
#' # load not normalized data
#' concatenate_expression("gene",
#' normalization = FALSE,
#' name = "HIF3A",
#' data_base = "legacy",
#' tumor = "CHOL",
#' env = CHOL_LEGACY_gene_tumor_data,
#' work_dir = "~/Desktop"
#' )
#'
#' # start DE analysis
#' # considering concatenate_expression and groups_identification already runned
#' dea_edger(
#' name = "HIF3A",
#' group_gen = "mclust",
#' env = CHOL_LEGACY_gene_tumor_data
#' )
#'
#' draw_heatmap("edgeR", name = "HIF3A", env = CHOL_LEGACY_gene_tumor_data)
draw_heatmap <- function(tool, fc_cutoff = 2,
name,
method = "euclidean",
pair_name = "G2_over_G1",
raw_values = FALSE,
width = 6,
height = 6,
res = 300,
unit = "in",
image_format = "svg",
env,
scale_method = "row",
outer_margins = c(0, 0, 0, 0),
cex_col = 0,
cex_row = 0,
degree = 45,
lab_row = NULL,
lab_col = NULL) {
# verifying if the package is already installed
# local function ####
heatmap_3 <- function(x,
rowv = TRUE, colv = if (symm) "Rowv" else TRUE,
distfun = dist,
hclustfun = hclust,
dendrogram = c("both", "row", "column", "none"),
symm = FALSE,
scale = c("none", "row", "column"),
na.rm = TRUE,
rev_c = identical(colv, "Rowv"),
add_expr,
breaks,
symbreaks = max(x < 0, na.rm = TRUE) || scale != "none",
col = "heat.colors",
colsep,
rowsep,
sepcolor = "white",
sepwidth = c(0.05, 0.05),
cellnote,
notecex = 1,
notecol = "cyan",
na_color = par("bg"),
trace = c("none", "column", "row", "both"),
tracecol = "cyan",
hline = median(breaks),
vline = median(breaks),
linecol = tracecol,
margins = c(5, 5),
col_sidecolors,
row_sidecolors,
side_height_fraction = 0.1,
cex_row,
cex_col,
degree = 65,
scale_range_min,
scale_range_max,
cex_main = 1,
lab_row = NULL,
lab_col = NULL,
key = TRUE,
keysize = 1.5,
density_info = c("none", "histogram", "density"),
denscol = tracecol,
symkey = max(x < 0, na.rm = TRUE) || symbreaks,
densadj = 0.25,
main = NULL,
xlab = NULL,
ylab = NULL,
lmat = NULL,
lhei = NULL,
lwid = NULL,
num_col_sidecolors = 1,
num_row_sidecolors = 1,
key_value_name, ...) {
# created by obigriffith in
# "https://raw.githubusercontent.com/trinityrnaseq/trinityrnaseq/
# master/Analysis/DifferentialExpression/R/heatmap_3.R"
# # pulled from here, and then tweaked slightly:
# http://www.biostars.org/p/18211/
invalid <- function(x) {
if (missing(x) || is.null(x) || length(x) == 0) {
return(TRUE)
}
if (is.list(x)) {
return(all(sapply(x, invalid)))
} else if (is.vector(x)) {
return(all(is.na(x)))
} else {
return(FALSE)
}
}
x <- as.matrix(x)
scale01 <- function(x, low = min(x), high = max(x)) {
x <- (x - low) / (high - low)
x
}
retval <- list()
scale <- ifelse(symm && missing(scale), "none", match.arg(scale))
dendrogram <- match.arg(dendrogram)
trace <- match.arg(trace)
density_info <- match.arg(density_info)
if (length(col) == 1 && is.character(col)) {
col <- get(col, mode = "function")
}
if (!missing(breaks) && (scale != "none")) {
warning(
"Using scale=\"row\" or scale=\"column\" when breaks are",
"specified can produce unpredictable results.",
"Please consider using only one or the other."
)
}
if (is.null(rowv) || is.na(rowv)) {
rowv <- FALSE
}
if (is.null(colv) || is.na(colv)) {
colv <- FALSE
}
if (length(di <- dim(x)) != 2 || !is.numeric(x)) {
stop("`x' must be a numeric matrix")
}
nr <- di[1]
nc <- di[2]
if (nr <= 1 || nc <= 1) {
stop("`x' must have at least 2 rows and 2 columns")
}
if (!is.numeric(margins) || length(margins) != 2) {
stop("`margins' must be a numeric vector of length 2")
}
if (missing(cellnote)) {
cellnote <- matrix("", ncol = ncol(x), nrow = nrow(x))
}
if (!inherits(rowv, "dendrogram")) {
tmp <- ((!isTRUE(rowv)) || (is.null(rowv)))
if (tmp && (dendrogram %in% c("both", "row"))) {
if (is.logical(colv) && (colv)) {
dendrogram <- "column"
} else {
dendrogram <- "none"
}
warning(
"Discrepancy: Rowv is FALSE, while dendrogram is '",
dendrogram, "'. Omitting row dendogram."
)
}
}
if (!inherits(colv, "dendrogram")) {
tmp <- ((!isTRUE(colv)) || (is.null(colv)))
if (tmp && (dendrogram %in% c("both", "column"))) {
if (is.logical(rowv) && (rowv)) {
dendrogram <- "row"
} else {
dendrogram <- "none"
}
warning(
"Discrepancy: Colv is FALSE, while dendrogram is '",
dendrogram, "'. Omitting column dendogram."
)
}
}
if (inherits(rowv, "dendrogram")) {
ddr <- rowv
row_ind <- order.dendrogram(ddr)
}
else if (is.integer(rowv)) {
hcr <- hclustfun(distfun(x))
ddr <- as.dendrogram(hcr)
ddr <- reorder(ddr, rowv)
row_ind <- order.dendrogram(ddr)
if (nr != length(row_ind)) {
stop("row dendrogram ordering gave index of wrong length")
}
}
else if (isTRUE(rowv)) {
rowv <- rowMeans(x, na.rm = na.rm)
hcr <- hclustfun(distfun(x))
ddr <- as.dendrogram(hcr)
ddr <- reorder(ddr, rowv)
row_ind <- order.dendrogram(ddr)
if (nr != length(row_ind)) {
stop("row dendrogram ordering gave index of wrong length")
}
}
else {
row_ind <- nr:1
}
if (inherits(colv, "dendrogram")) {
ddc <- colv
col_ind <- order.dendrogram(ddc)
}
else if (identical(colv, "Rowv")) {
if (nr != nc) {
stop("Colv = \"Rowv\" but nrow(x) != ncol(x)")
}
if (exists("ddr")) {
ddc <- ddr
col_ind <- order.dendrogram(ddc)
}
else {
col_ind <- row_ind
}
}
else if (is.integer(colv)) {
hcc <- hclustfun(distfun(if (symm) {
x
} else {
t(x)
}))
ddc <- as.dendrogram(hcc)
ddc <- reorder(ddc, colv)
col_ind <- order.dendrogram(ddc)
if (nc != length(col_ind)) {
stop("column dendrogram ordering gave index of wrong length")
}
}
else if (isTRUE(colv)) {
colv <- colMeans(x, na.rm = na.rm)
hcc <- hclustfun(distfun(if (symm) {
x
} else {
t(x)
}))
ddc <- as.dendrogram(hcc)
ddc <- reorder(ddc, colv)
col_ind <- order.dendrogram(ddc)
if (nc != length(col_ind)) {
stop("column dendrogram ordering gave index of wrong length")
}
}
else {
col_ind <- 1:nc
}
retval$row_ind <- row_ind
retval$col_ind <- col_ind
retval$call <- match.call()
x <- x[row_ind, col_ind] # rearrange matrix according to dendrograms
cellnote <- cellnote[row_ind, col_ind] # also rearrange the cellnotes
# get labels
if (is.null(lab_row)) {
lab_row <- if (is.null(rownames(x))) {
(1:nr)[row_ind]
} else {
rownames(x)
}
} else {
lab_row <- lab_row[row_ind]
}
if (is.null(lab_col)) {
lab_col <- if (is.null(colnames(x))) {
(1:nc)[col_ind]
} else {
colnames(x)
}
} else {
lab_col <- lab_col[col_ind]
}
## do scaling of matrix according to Z-scores
if (scale == "row") {
retval$row_means <- rm <- rowMeans(x, na.rm = na.rm)
x <- sweep(x, 1, rm)
retval$row_sds <- sx <- apply(x, 1, sd, na.rm = na.rm)
x <- sweep(x, 1, sx, "/")
}
else if (scale == "column") {
retval$col_means <- rm <- colMeans(x, na.rm = na.rm)
x <- sweep(x, 2, rm)
retval$col_sds <- sx <- apply(x, 2, sd, na.rm = na.rm)
x <- sweep(x, 2, sx, "/")
}
# number of breaks
if (missing(breaks) || is.null(breaks) || length(breaks) < 1) {
breaks <- ifelse(
missing(col) || is.function(col), 16, length(col) + 1
)
}
# set breakpoints
if (length(breaks) == 1) {
if (missing(scale_range_min)) {
scale_range_min <- min(x, na.rm = na.rm)
}
if (missing(scale_range_max)) {
scale_range_max <- max(x, na.rm = na.rm)
}
if (!symbreaks) {
breaks <- seq(scale_range_min, scale_range_max, length = breaks)
} else {
extreme <- max(abs(c(scale_range_min, scale_range_max)),
na.rm = na.rm)
breaks <- seq(-extreme, extreme, length = breaks)
}
}
ncol <- length(breaks) - 1
if (class(col) == "function") {
col <- col(ncol)
}
min.breaks <- min(breaks)
max.breaks <- max(breaks)
# adjust for out-of-range given break settings
x[x < min.breaks] <- min.breaks
x[x > max.breaks] <- max.breaks
# layout height
if (missing(lhei) || is.null(lhei)) {
lhei <- c(keysize, 4)
}
# layout width
if (missing(lwid) || is.null(lwid)) {
lwid <- c(keysize, 4)
}
# define the layout
if (missing(lmat) || is.null(lmat)) {
lmat <- rbind(4:3, 2:1)
if (!missing(col_sidecolors)) {
tmp <- !is.character(col_sidecolors)
if (tmp || ncol(col_sidecolors) != nc) {
stop("'col_sidecolors' must be a matrix of ncol(x) ",
nc, " columns")
}
lmat <- rbind(lmat[1, ] + 1, c(NA, 1), lmat[2, ] + 1)
side_height <- min(
side_height_fraction * nrow(col_sidecolors), 1
)
lhei <- c(lhei[1], side_height, lhei[2])
}
if (!missing(row_sidecolors)) {
tmp <- !is.character(row_sidecolors)
if (tmp || nrow(row_sidecolors) != nr) {
stop("'row_sidecolors' must be a matrix of nrow(x) ",
nr, " rows. It currently has ",
nrow(row_sidecolors), " rows.")
}
lmat <- cbind(
lmat[, 1] + 1, c(rep(NA, nrow(lmat) - 1), 1),
lmat[, 2] + 1
)
side_width <- min(
side_height_fraction * ncol(row_sidecolors), 1
)
lwid <- c(lwid[1], side_width, lwid[2])
}
lmat[is.na(lmat)] <- 0
}
if (length(lhei) != nrow(lmat)) {
stop("lhei must have length = nrow(lmat) = ", nrow(lmat))
}
if (length(lwid) != ncol(lmat)) {
stop("lwid must have length = ncol(lmat) =", ncol(lmat))
}
op <- par(no.readonly = TRUE)
on.exit(par(op))
layout(lmat, widths = lwid, heights = lhei, respect = FALSE)
# Draw the colorbars for the annotations:
if (!missing(row_sidecolors)) {
if (!is.matrix(row_sidecolors)) {
par(mar = c(margins[1], 0, 0, 0.5))
image(rbind(1:nr), col = row_sidecolors[row_ind], axes = FALSE)
} else {
par(mar = c(margins[1], 0, 0, 0.5))
rsc <- t(row_sidecolors[row_ind, , drop = FALSE])
rsc_colors <- matrix()
rsc_names <- names(table(rsc))
rsc_i <- 1
for (rsc.name in rsc_names) {
rsc_colors[rsc_i] <- rsc.name
rsc[rsc == rsc.name] <- rsc_i
rsc_i <- rsc_i + 1
}
rsc <- matrix(as.numeric(rsc), nrow = dim(rsc)[1])
image(seq_len(nrow(rsc)), seq_len(ncol(rsc)), rsc,
col = as.vector(rsc_colors), axes = FALSE,
xlab = "", ylab = ""
)
# add labels
if (length(colnames(row_sidecolors)) > 0) {
axis(1, seq_len(ncol(row_sidecolors)),
labels = colnames(row_sidecolors), las = 2,
tick = FALSE, xlab = "", ylab = ""
)
}
}
}
if (!missing(col_sidecolors)) {
if (!is.matrix(col_sidecolors)) {
par(mar = c(0.5, 0, 0, margins[2]))
image(cbind(1:nc), col = col_sidecolors[col_ind], axes = FALSE)
} else {
par(mar = c(0.5, 0, 0, margins[2]))
csc <- col_sidecolors[, col_ind, drop = FALSE]
csc_colors <- matrix()
csc_names <- names(table(csc))
csc_i <- 1
for (csc.name in csc_names) {
csc_colors[csc_i] <- csc.name
csc[csc == csc.name] <- csc_i
csc_i <- csc_i + 1
}
csc <- matrix(as.numeric(csc), nrow = dim(csc)[1])
image(seq(1, nrow(t(csc))), seq(1, ncol(t(csc))), t(csc),
col = as.vector(csc_colors), axes = FALSE,
xlab = "", ylab = ""
)
# add labels
if (length(rownames(col_sidecolors)) > 0) {
axis(2, 1:(nrow(col_sidecolors)),
labels = rownames(col_sidecolors), las = 2,
tick = FALSE
)
}
}
}
par(mar = c(margins[1], 0, 0, margins[2]))
x <- t(x)
cellnote <- t(cellnote)
if (rev_c) {
iy <- nr:1
if (exists("ddr")) {
ddr <- rev(ddr)
}
x <- x[, iy]
cellnote <- cellnote[, iy]
}
else {
iy <- 1:nr
}
# draw the central heatmap
image(1:nc, 1:nr, x,
xlim = 0.5 + c(0, nc), ylim = 0.5 + c(0, nr),
axes = FALSE, xlab = "", ylab = "",
col = col, breaks = breaks, ...
)
# store the matrix drawn
retval$carpet <- x
# store the dendrograms
if (exists("ddr")) {
retval$row_dendrogram <- ddr
}
if (exists("ddc")) {
retval$col_dendrogram <- ddc
}
# store the breaks
retval$breaks <- breaks
# store the colormap used
retval$col <- col
# specially color in the na values
if (!invalid(na_color) & any(is.na(x))) { # load library(gplots)
mmat <- ifelse(is.na(x), 1, NA)
image(1:nc, 1:nr, mmat,
axes = FALSE, xlab = "", ylab = "",
col = na_color, add = TRUE
)
}
# X-axis column labels
if (degree == 90) {
axis(1, 1:nc, labels = lab_col, las = 2, line = -0.5, tick = 0)
} else {
tck <- axis(1, 1:nc,
labels = FALSE, las = 2, line = -0.5,
tick = 0
)
labels <- lab_col
text(tck, par("usr")[3],
labels = labels, srt = degree,
xpd = NA, adj = c(1, 0.8), cex = cex_col
)
}
# X-axis title
if (!is.null(xlab)) {
mtext(xlab, side = 1, line = margins[1] - 1.25)
}
# Y-axis row labeling
axis(4, iy, labels = lab_row, las = 2, line = -0.5, tick = 0)
# Y-axis title
if (!is.null(ylab)) {
mtext(ylab, side = 4, line = margins[2] - 1.25)
}
if (!missing(add_expr)) {
eval(substitute(add_expr))
}
if (!missing(colsep)) {
for (csep in colsep) rect(
xleft = csep + 0.5,
ybottom = rep(0, length(csep)),
xright = csep + 0.5 + sepwidth[1],
ytop = rep(ncol(x) + 1, csep),
lty = 1,
lwd = 1,
col = sepcolor, border = sepcolor
)
}
if (!missing(rowsep)) {
for (rsep in rowsep) rect(
xleft = 0,
ybottom = (ncol(x) + 1 - rsep) - 0.5,
xright = nrow(x) + 1,
ytop = (ncol(x) + 1 - rsep) - 0.5 - sepwidth[2],
lty = 1,
lwd = 1,
col = sepcolor,
border = sepcolor
)
}
min.scale <- min(breaks)
max.scale <- max(breaks)
x_scaled <- scale01(t(x), min.scale, max.scale)
# column trace
if (trace %in% c("both", "column")) {
retval$vline <- vline
vline_vals <- scale01(vline, min.scale, max.scale)
for (i in col_ind) {
if (!is.null(vline)) {
abline(v = i - 0.5 + vline_vals, col = linecol, lty = 2)
}
xv <- rep(i, nrow(x_scaled)) + x_scaled[, i] - 0.5
xv <- c(xv[1], xv)
yv <- seq_len(length(xv) - 0.5)
lines(x = xv, y = yv, lwd = 1, col = tracecol, type = "s")
}
}
# row trace
if (trace %in% c("both", "row")) {
retval$hline <- hline
for (i in row_ind) {
if (!is.null(hline)) {
abline(h = i + hline, col = linecol, lty = 2)
}
yv <- rep(i, ncol(x_scaled)) + x_scaled[i, ] - 0.5
yv <- rev(c(yv[1], yv))
xv <- seq(length(yv), 1) - 0.5
lines(x = xv, y = yv, lwd = 1, col = tracecol, type = "s")
}
}
# add cell labels
if (!missing(cellnote)) {
text(
x = c(row(cellnote)), y = c(col(cellnote)),
labels = c(cellnote), col = notecol,
cex = notecex
)
}
# Plot the row dendrogram
par(mar = c(margins[1], 0, 0, 0))
if (dendrogram %in% c("both", "row")) {
plot(ddr, horiz = TRUE, axes = FALSE, yaxs = "i", leaflab = "none")
}
else {
plot.new()
}
# Plot the column dendrogram
par(mar = c(0, 0, if (!is.null(main)) 5 else 0, margins[2]))
if (dendrogram %in% c("both", "column")) {
plot(ddc, axes = FALSE, xaxs = "i", leaflab = "none")
}
else {
plot.new()
}
if (!is.null(main)) {
title(main, cex_main = cex_main)
}
# Add the Color Chart
if (key) {
par(mar = c(5, 4, 2, 1), cex = 0.75)
tmpbreaks <- breaks
if (symkey) {
max.raw <- max(abs(c(x, breaks)), na.rm = TRUE)
min.raw <- -max.raw
tmpbreaks[1] <- -max(abs(x), na.rm = TRUE)
tmpbreaks[length(tmpbreaks)] <- max(abs(x), na.rm = TRUE)
}
else {
min.raw <- min(c(x, breaks), na.rm = TRUE)
max.raw <- max(c(x, breaks), na.rm = TRUE)
}
z <- seq(min.raw, max.raw, length = length(col))
image(
z = matrix(z, ncol = 1), col = col, breaks = tmpbreaks,
xaxt = "n", yaxt = "n"
)
par(usr = c(0, 1, 0, 1))
lv <- pretty(breaks)
xv <- scale01(as.numeric(lv), min.raw, max.raw)
axis(1, at = xv, labels = lv)
if (scale == "row") {
mtext(side = 1, "Row Z-Score", line = 2, cex = 0.7)
} else if (scale == "column") {
mtext(side = 1, "Column Z-Score", line = 2, cex = 0.7)
} else {
mtext(side = 1, key_value_name, line = 2, cex = 0.7)
}
if (density_info == "density") {
dens <- density(x, adjust = densadj, na.rm = TRUE)
omit <- dens$x < min(breaks) | dens$x > max(breaks)
dens$x <- dens$x[-omit]
dens$y <- dens$y[-omit]
dens$x <- scale01(dens$x, min.raw, max.raw)
lines(dens$x, dens$y / max(dens$y) * 0.95,
col = denscol,
lwd = 1
)
axis(2, at = pretty(dens$y) / max(dens$y) * 0.95,
pretty(dens$y))
title("Color Key\nand Density Plot")
par(cex = 0.3)
mtext(side = 2, "Density", line = 2)
}
else if (density_info == "histogram") {
h <- hist(x, plot = FALSE, breaks = breaks)
hx <- scale01(breaks, min.raw, max.raw)
hy <- c(h$counts, h$counts[length(h$counts)])
lines(hx, hy / max(hy) * 0.95,
lwd = 1, type = "s",
col = denscol
)
axis(2, at = pretty(hy) / max(hy) * 0.95, pretty(hy))
title("Color Key\nand Histogram")
par(cex = 0.3)
mtext(side = 2, "Count", line = 2)
}
else {
title("Color Key")
}
}
else {
plot.new()
}
retval$color_table <- data.frame(
low = retval$breaks[-length(retval$breaks)],
high = retval$breaks[-1], color = retval$col
)
invisible(retval)
}
final_heatmap <- function(dist_method, scale_method) {
# is the lab_row desired?
if (!is.null(lab_row) && tolower(lab_row) == "rownames") {
lab_row <- rownames(para_heatmaps)
} else if (is.null(lab_row)) {
lab_row <- ""
}
# is the lab_col desired?
if (!is.null(lab_col) && tolower(lab_col) == "colnames") {
lab_col <- colnames(para_heatmaps)
} else if (is.null(lab_col)) {
lab_col <- ""
}
if (tolower(image_format) == "png") {
png(
filename = paste0(
dir,
"/Heatmaps/", dist_method, "_",
method, "_", scale_method,
"_fc_cutoff=", fc_cutoff, "_",
pair_name, ".png"
),
width = width, height = height, res = res, units = unit
)
} else if (tolower(image_format) == "svg") {
svg(
filename = paste0(
dir,
"/Heatmaps/", dist_method, "_",
method, "_", scale_method,
"_fc_cutoff=", fc_cutoff, "_",
pair_name, ".svg"
),
width = width, height = height, onefile = TRUE
)
} else {
stop(message(
"Please, Insert a valid image_format!",
" ('png' or 'svg')"
))
}
par(oma = outer_margins)
heatmap_3(df,
scale = scale_method,
dendrogram = "both",
margins = c(3, 9),
rowv = row_dendro,
keysize = 1.1,
colv = col_dendro,
lab_row = lab_row,
lab_col = lab_col,
symbreaks = FALSE,
key = TRUE, symkey = FALSE,
col_sidecolors = t(colour_groups),
density_info = "none",
trace = "none",
cex_col = cex_col,
cex_row = cex_row,
degree = degree, col = rampa_de_cor,
key_value_name = color_key_name
)
legend("topright",
legend = paste0("G", levels(cond_heatmap)),
title = "Groups",
fill = possible_colors[as.numeric(levels(cond_heatmap))],
border = FALSE,
bty = "n", y.intersp = 0.7, cex = 0.7
)
dev.off()
patient_order <- as.matrix(patient_order)
patient_order <- cbind(seq_len(nrow(patient_order)), patient_order)
colnames(patient_order) <- c("Dendrogram Order", "Patient")
write.csv(patient_order, paste0(
dir, "/Heatmaps/Patient_order_",
dist_method, "_",
method, "_", scale_method,
"_fc_cutoff=", fc_cutoff, "_",
pair_name, ".csv"
),
row.names = FALSE
)
row_order <- as.matrix(row_order)
row_order <- cbind(seq(1, nrow(resultados_de)), row_order)
colnames(row_order) <- c("Dendrogram Order", "Row")
write.csv(row_order, paste0(
dir, "/Heatmaps/Row_order_",
dist_method, "_",
method, "_", scale_method,
"_fc_cutoff=", fc_cutoff, "_",
pair_name, ".csv"
),
row.names = FALSE
)
}
# code ####
name <- gsub("-", "_", name)
if (missing(env)) {
stop(message(
"The 'env' argument is missing, please",
" insert the 'env' name and try again!"
))
}
ev <- deparse(substitute(env))
sv <- list(ev = get(ev))
path <- ifelse(exists("name_e", envir = get(ev)), file.path(
sv[["ev"]]$path,
sv[["ev"]]$name_e
), sv[["ev"]]$path)
group_gen <- sv[["ev"]]$group_gen
# creating the dir to outputs
if (tolower(tool) == "ebseq") {
dir <- paste0(
path, "/EBSeq_Results.",
tolower(group_gen), "_", toupper(name)
)
resultados_de <- sv[["ev"]]$resultados_de_ebseq[[pair_name]]
normalized_expression <- sv[["ev"]]$normalized_expression_ebseq
} else if (tolower(tool) == "edger") {
dir <- paste0(
path, "/edgeR_Results.",
tolower(group_gen), "_", toupper(name)
)
resultados_de <- sv[["ev"]]$resultados_de_edger[[pair_name]]
normalized_expression <- sv[["ev"]]$normalized_expression_edger
} else if (tolower(tool) == "deseq2") {
dir <- paste0(
path, "/DESeq2_Results.",
tolower(group_gen), "_", toupper(name)
)
resultados_de <- sv[["ev"]]$resultados_de_deseq2[[pair_name]]
normalized_expression <- sv[["ev"]]$normalized_expression_deseq2
} else if (tolower(tool) == "crosstable.deseq2") {
dir <- paste0(path, "/CrossData_deseq2")
resultados_de <- sv[["ev"]]$resultados_de_crossed[[pair_name]]
normalized_expression <- sv[["ev"]]$normalized_expression_deseq2
} else if (tolower(tool) == "crosstable.edger") {
dir <- paste0(path, "/CrossData_edger")
resultados_de <- sv[["ev"]]$resultados_de_crossed[[pair_name]]
normalized_expression <- sv[["ev"]]$normalized_expression_edger
} else if (tolower(tool) == "crosstable.ebseq") {
dir <- paste0(path, "/CrossData_ebseq")
resultados_de <- sv[["ev"]]$resultados_de_crossed[[pair_name]]
normalized_expression <- sv[["ev"]]$normalized_expression_ebseq
} else {
stop(message(
"Please, insert a valid tool name!",
" ('EBSeq', 'DESeq2' or 'edgeR')"
))
}
dir.create(file.path(dir, "Heatmaps"), showWarnings = FALSE)
cond_heatmap <- eval(parse(text = paste0(
"sv[['ev']]",
"$cond_heatmap"
)))
patients_stay <- unlist(strsplit(gsub("G", "", pair_name), "_over_"))
# keep the desired group pair
tmp <- cond_heatmap %in% patients_stay
normalized_expression <- normalized_expression[, tmp]
cond_heatmap <- droplevels(cond_heatmap[cond_heatmap %in% patients_stay])
# Create table just with DE and with fc_cutoff
resultados_de_up <- resultados_de[resultados_de$log2FC > log2(fc_cutoff), ]
tmp <- resultados_de$log2FC < log2(fc_cutoff)
resultados_de_down <- resultados_de[tmp, ]
resultados_de <- rbind(resultados_de_up, resultados_de_down)
# Select only the DE results to use in heatmaps (next step) removing the EE
para_heatmaps <- as.matrix(normalized_expression[match(
rownames(resultados_de),
rownames(normalized_expression)
), ])
colnames(para_heatmaps) <- seq(1, length(colnames(para_heatmaps)))
# Preparing color ramp
rampa_de_cor <- gplots::colorpanel(512, "blue", "white", "red")
# Naming the heatmap cols
possible_colors <- RColorBrewer::brewer.pal(8, "Set2")
colour_groups <- possible_colors[cond_heatmap]
colour_groups <- as.matrix(colour_groups)
rownames(colour_groups) <- seq_len(nrow(colour_groups))
colnames(colour_groups) <- "Groups"
if (tolower(scale_method) == "none" && raw_values) {
df <- log2(para_heatmaps + 1)
color_key_name <- "Log2(Expression Values + 1)"
} else if (tolower(scale_method) == "none") {
df <- scale(log2(para_heatmaps + 1))
color_key_name <- "Z-Score"
} else {
df <- log2(para_heatmaps + 1)
}
dist_matrix_col <- amap::Dist(t(df), method = method)
dist_matrix_row <- amap::Dist(df, method = method)
# complete
dendro_euc_complete_col <- hclust(d = dist_matrix_col, method = "complete")
dendro_euc_complete_row <- hclust(d = dist_matrix_row, method = "complete")
row_dendro <- as.dendrogram(dendro_euc_complete_row)
col_dendro <- as.dendrogram(dendro_euc_complete_col)
tmp <- dendro_euc_complete_col$order
patient_order <- colnames(normalized_expression)[tmp]
row_order <- rownames(resultados_de)[dendro_euc_complete_row$order]
method <- "complete"
if (length(method) > 1) {
for (Methods in method) {
final_heatmap(dist_method = Methods, scale_method = scale_method)
}
} else {
final_heatmap(dist_method = method, scale_method = scale_method)
}
# average
dendro_euc_average_col <- hclust(d = dist_matrix_col, method = "average")
dendro_euc_average_row <- hclust(d = dist_matrix_row, method = "average")
row_dendro <- as.dendrogram(dendro_euc_average_row)
col_dendro <- as.dendrogram(dendro_euc_average_col)
tmp <- dendro_euc_average_col$order
patient_order <- colnames(normalized_expression)[tmp]
row_order <- rownames(resultados_de)[dendro_euc_average_row$order]
method <- "average"
if (length(method) > 1) {
for (Methods in method) {
final_heatmap(dist_method = Methods, scale_method = scale_method)
}
} else {
final_heatmap(dist_method = method, scale_method = scale_method)
}
message("\nDone!\n")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.