R/KdModels.R

Defines functions assignKdType .add8merN .getFlankingScore .flankingValues .prep12mers getKdModel

Documented in assignKdType getKdModel

#' miRNA affinity models
#'
#' Methods for the \code{\link{KdModel}} class
#'
#' @name KdModel
#' @rdname KdModel
#' @aliases KdModel-methods KdModel-class
#' @seealso \code{\link{KdModel}}, \code{\link{KdModelList}}
#' @param object,x,... An object of class \code{\link{KdModel}}
#' @return Depends on the method.
#' @exportClass KdModel
#' @examples
#' data(SampleKdModel)
#' SampleKdModel
#' summary(SampleKdModel)
setClass(
  "KdModel",
  contains="list",
  validity=function(object){
    for(f in c("name","canonical.seed","mirseq")){
      if(!is.character(object[[f]]) || length(object[[f]])!=1)
        stop("The model should have a `",f,
             "` slot (character vector of length 1).")
    }
    if(is.null(object$mer8) || !(length(object$mer8) %in% c(1024,1440)) ||
       !is.integer(object$mer8)){
      stop("The `mer8` slot should be an integer vector of length 1024.")
    }
    if(is.null(object$fl) || !(length(object$fl) %in% c(1024,1440)) ||
       !is.integer(object$fl)){
      stop("The `fl` slot should be an integer vector of length 1024.")
    }
  }
)


#' @rdname KdModel
#' @export
setMethod("show", "KdModel", function(object){
  con <- conservation(object)
  con <- ifelse(is.na(con),"",paste0(" (",as.character(con),")"))
  cat(paste0("A `KdModel` for ", object$name, con, "\n  Sequence: ",
             gsub("T","U",object$mirseq), "\n  Canonical target seed: ",
             gsub("A$","(A)",object$canonical.seed)))
})


#' @rdname KdModel
#' @export
setMethod("summary", "KdModel", function(object){
  c( name=object$name, sequence=gsub("T","U",object$mirseq),
     canonical.seed=object$canonical.seed,
     conservation=as.character(conservation(object)) )
})

#' @rdname KdModel
#' @export
setMethod("c", signature(x = "KdModel"), function (x, ...){
  KdModelList(c(list(x), list(...)))
})


#' getKdModel
#'
#' @param kd A data.frame containing the log_kd per 12-mer sequence, or the
#' path to a text/csv file containing such a table. Should contain the columns
#' 'log_kd', '12mer' (or 'X12mer'), and eventually 'mirseq' (if the `mirseq`
#' argument is NULL) and 'mir' (if the `name` argument is NULL).
#' @param mirseq The miRNA (cDNA) sequence.
#' @param name The name of the miRNA.
#' @param conservation The conservation level of the miRNA. See
#' `scanMiR:::.conservation_levels()` for possible values.
#' @param ... Any additional information to be saved with the model.
#'
#' @return An object of class `KdModel`.
#' @export
#' @importFrom stats .lm.fit median cor
#' @importFrom utils read.delim
#' @importFrom methods is new
#' @examples
#' kd <- dummyKdData()
#' mod <- getKdModel(kd=kd, mirseq="TTAATGCTAATCGTGATAGGGGTT", name="my-miRNA")
getKdModel <- function( kd, mirseq=NULL, name=NULL, conservation=NA_integer_,
                        ...){
  if(is.character(kd) && length(kd)==1){
    if(is.null(name)) name <- gsub("\\.txt$|\\.csv$","",
                                   gsub("_kds","",basename(kd)))
    kd <- read.delim(kd, header=TRUE, stringsAsFactors=FALSE)[,c(1,2,4)]
  }
  if(is.null(mirseq) && !is.null(kd$mirseq))
    mirseq <- as.character(kd$mirseq[1])
  if(is.null(name) && !is.null(kd$mir)) name <- as.character(kd$mir[1])
  stopifnot(!is.null(name) && !is.null(mirseq))
  if(!("X12mer" %in% colnames(kd)) && "12mer" %in% colnames(kd))
    colnames(kd) <- gsub("^12mer$","X12mer",colnames(kd))
  kd <- kd[,c("X12mer","log_kd")]
  seed <- reverseComplement(DNAString(substr(mirseq, 2,8)))
  seed <- paste0(as.character(seed),"A")
  w <- grep("X|N",kd$X12mer,invert=TRUE)
  pwm <- Biostrings::consensusMatrix(
    as.character(rep(kd$X12mer[w], floor( (exp(-kd$log_kd[w]))/3 ))),
    as.prob=TRUE, width=12L
  )
  fields <- c("mer8","fl.score")
  if(!all(fields %in% colnames(kd))) kd <- .prep12mers(kd, seed=seed)
  fields <- c(fields, "log_kd")
  if(!all(fields %in% colnames(kd))) stop("Malformed `kd` data.frame.")
  co <- t(vapply(split(kd[,c("log_kd","fl.score")], kd$mer8),
                 FUN.VALUE=numeric(2), FUN=function(x){
    .lm.fit(cbind(1,x$fl.score),x$log_kd)$coefficients
  }))
  fitted <- co[kd$mer8,1]+co[kd$mer8,2]*kd$fl.score
  if(!is.na(conservation)){
    co <- .conservation_levels()
    if(!is.numeric(conservation)){
      if(!(conservation %in% co)){
        warning("Unknown conservation level - will be set to NA")
        conservation <- NA_integer_
      }else{
        conservation <- as.integer(names(co)[which(co==conservation)])
      }
    }else{
      if(!(as.character(conservation) %in% names(co)))
        warning("Unknown conservation level.")
    }
  }
  new("KdModel", list(mer8=as.integer(round(co[,1]*1000)),
                      fl=as.integer(round(co[,2]*1000)),
                      name=name, mirseq=mirseq, canonical.seed=seed,
                      pwm=pwm, conservation=conservation,
                      cor=cor(fitted, kd$log_kd),
                      mae=median(abs(kd$log_kd-fitted)), ... ))
}

.prep12mers <- function(x, seed){
  if(is.data.frame(x)){
    if(!all(c("X12mer","log_kd") %in% colnames(x)))
      stop("`x` should be a character vector or a data.frame with the columns ",
           "'X12mer' and 'log_kd'")
    x <- x[grep("N|X",substr(x$X12mer, 3,10),invert=TRUE),]
    x <- cbind(x[,"log_kd",drop=FALSE], .prep12mers(x$X12mer, seed=seed))
    return(x[!is.na(x$mer8),])
  }
  x <- gsub("X","N",as.character(x))
  y <- .getFlankingScore(x)
  data.frame(mer8=as.integer(factor(substr(x, 3,10),
                                    levels=getSeed8mers(seed))),
             fl.score=y$score, fl.ratio=y$ratio)
}

.flankingValues <- function(){
  matrix(c(-0.24, -0.14, 0, 0.1, 0.28, -0.24, -0.3, 0, 0.13, 0.42, -0.075,
           -0.18, 0, 0, 0.25, -0.1, -0.1, 0, 0, 0.26),
         nrow=5, dimnames=list(c("A","T","N","C","G")))
}

.getFlankingScore <- function(x){
  fl.s <- .flankingValues()
  fl.m <- cbind(substr(x,1,1), substr(x,2,2), substr(x,11,11),substr(x,12,12))
  fl.m <- matrix(as.integer(factor(fl.m, row.names(fl.s))), ncol=4)
  fl.score <- vapply(1:4, FUN.VALUE=numeric(length(x)),
                     FUN=function(i) fl.s[fl.m[,i,drop=FALSE],i,drop=FALSE])
  if(is.null(dim(fl.score))) fl.score <- matrix(fl.score, ncol=4)
  fl.score <- rowSums(fl.score)
  fl.ratio <- rowSums( (fl.m-3)>0 ) - rowSums( (fl.m-3)<0 )
  return( list(score=fl.score, ratio=fl.ratio) )
}

.add8merN <- function(mod, mer8=NULL){
  if(is.null(mer8)) mer8 <- getSeed8mers(mod$canonical.seed, addNs=TRUE)
  i1 <- split(1:1024, substr(mer8[1:1024],2,8))
  i2 <- split(1:1024, substr(mer8[1:1024],1,7))
  fl <- co <- rep(0L,416)
  m1 <- grep("^N",mer8)
  m2 <- grep("N$",mer8)
  tmpf <- function(x,i) as.integer(vapply(x, FUN.VALUE=numeric(1),
                                          FUN=function(j) median(mod[[i]][j])))
  co[m1-1024] <- tmpf(i1[gsub("N","",mer8[m1])], "mer8")
  fl[m1-1024] <- tmpf(i1[gsub("N","",mer8[m1])], "fl")
  co[m2-1024] <- tmpf(i2[gsub("N","",mer8[m2])], "mer8")
  fl[m2-1024] <- tmpf(i2[gsub("N","",mer8[m2])], "fl")
  mod$mer8 <- c(mod$mer8, co)
  mod$fl <- c(mod$fl, fl)
  mod
}

#' assignKdType
#'
#' Assigns a log_kd and match type to a set of matched sequences.
#'
#' @param x A vector of matched sequences, each of 12 nucleotides
#' @param mod An object of class `KdModel`
#' @param mer8 The optional set of 8mers included in the model (for internal
#' use; can be reconstructed from the model).
#'
#' @return A data.frame with one row for each element of `x`, and the columns
#' `type` and `log_kd`. To save space, the reported log_kd is multiplied by
#' 1000, rounded and saved as an integer.
#' @export
#' @examples
#' data(SampleKdModel)
#' assignKdType(c("CTAGCATTAAGT","ACGTACGTACGT"), SampleKdModel)
assignKdType <- function(x, mod, mer8=NULL){
  stopifnot(is(mod,"KdModel"))
  if(is.null(mer8)) mer8 <- getSeed8mers(mod$canonical.seed, addNs=TRUE)
  mod <- .add8merN(mod, mer8)
  fl.score <- as.numeric(.getFlankingScore(x)$score)
  mer9 <- factor(as.character(subseq(x, 2, 10)))
  mer8 <- factor(as.character(subseq(x, 3,10)), levels=mer8)
  d <- data.frame(
    type=getMatchTypes(levels(mer9), mod$canonical.seed)[as.integer(mer9)],
    log_kd=as.integer(round(mod$mer8[mer8] + fl.score*mod$fl[mer8]))
  )
  d$log_kd[is.na(d$log_kd)] <- 0L
  d
}
ETHZ-INS/scanMiR documentation built on July 17, 2024, 6:18 a.m.