# BUG the app doesn't work fully on Windows - check the problems
ppi <- 72
single_color <- "#025147"
generate_colours <- function(n_unique_values, qualpalr_colorspace, single_color = "#017c6b") {
if (n_unique_values > 99) {
return(sample(grDevices::colors(distinct = TRUE), n_unique_values))
}
if (n_unique_values > 1) {
return(qualpalr::qualpal(n_unique_values, colorspace = qualpalr_colorspace)$hex)
}
single_color
}
#' Write the objects for the ClustAssess ShinyApp
#'
#' @description Given the output of the ClustAssess pipeline, the expression matrix
#' and the metadata, this function creates the files needed for the ClustAssess
#' ShinyApp. The files are written in the project_folder and are the following:
#' - metadata.rds: the metadata file
#' - stability.h5: contains the stability results
#' - expression.h5: contains the expression matrix and the rank matrix
#'
#' @param clustassess_object The output of the ClustAssess automatic pipeline
#' @param expression_matrix The expression matrix
#' @param metadata The metadata
#' @param project_folder The folder where the files will be written
#' @param compression_level The compression level for the h5 files (See `rhdf5::h5createFile`` for more details)
#' @param chunk_size The chunk size for the rank matrix (See `rhdf5::h5createDataset` for more details)
#' @param gene_variance_threshold The threshold for the gene variance; genes with variance below this threshold will be removed
#' @param summary_function The function used for summarizing the stability values; the default is `median`
#' @param qualpalr_colorspace The colorspace used for generating the colors; the default is `pretty`
#'
#' @return NULL (the files are written in the project_folder)
#'
#' @export
write_objects <- function(clustassess_object,
expression_matrix,
metadata,
project_folder = ".",
compression_level = 6,
chunk_size = 100,
gene_variance_threshold = 0,
summary_function = stats::median,
qualpalr_colorspace = "pretty") {
metadata_file_name <- file.path(project_folder, "metadata.rds")
stability_file_name <- file.path(project_folder, "stability.h5")
expr_file_name <- file.path(project_folder, "expression.h5")
if (file.exists(expr_file_name)) {
stop(glue::glue("File {expr_file_name} already exists!"))
}
if (file.exists(stability_file_name)) {
stop(glue::glue("File {stability_file_name} already exists!"))
}
if (file.exists(metadata_file_name)) {
stop(glue::glue("File {metadata_file_name} already exists!"))
}
# metadata file
print(glue::glue("[{Sys.time()}] Writing the metadata"))
if (is.null(metadata)) {
metadata <- data.frame(
one_level = rep("one_level", ncol(expression_matrix)),
row.names = colnames(expression_matrix)
)
} else {
metadata$one_level <- factor(rep("one_level", nrow(metadata)))
}
metadata_columns <- colnames(metadata)
metadata_colors <- list()
metadata_unique <- list()
for (mtd_col in metadata_columns) {
if (is.factor(metadata[, mtd_col])) {
metadata[, mtd_col] <- as.character(metadata[, mtd_col])
metadata[, mtd_col][is.na(metadata[, mtd_col])] <- "N/A"
metadata[, mtd_col] <- factor(metadata[, mtd_col])
metadata_unique[[mtd_col]] <- levels(metadata[, mtd_col])
metadata_colors[[mtd_col]] <- generate_colours(length(metadata_unique[[mtd_col]]), qualpalr_colorspace)
} else if (is.character(metadata[, mtd_col])) {
metadata[, mtd_col][is.na(metadata[, mtd_col])] <- "N/A"
metadata[, mtd_col] <- factor(metadata[, mtd_col])
metadata_unique[[mtd_col]] <- levels(metadata[, mtd_col])
metadata_colors[[mtd_col]] <- generate_colours(length(metadata_unique[[mtd_col]]), qualpalr_colorspace)
} else if (is.logical(metadata[, mtd_col])) {
metadata_unique[[mtd_col]] <- c(FALSE, TRUE)
metadata_colors[[mtd_col]] <- qualpalr::qualpal(2, colorspace = qualpalr_colorspace)$hex
}
}
saveRDS(
list(
metadata = metadata,
metadata_colors = metadata_colors,
metadata_unique = metadata_unique
),
metadata_file_name
)
# establish the feature ordering (original and stable) and convert to data.table
feature_ordering <- list(original = list(), stable = list(), original_incremental = list())
resolution_values <- c()
ftype_index <- 1
nftypes <- length(clustassess_object$feature_stability$by_steps)
unique_n_colors <- c(nftypes)
clustassess_object$feature_stability$colours <- generate_colours(nftypes, qualpalr_colorspace)
for (ftype in names(clustassess_object$feature_stability$by_steps)) {
feature_ordering$original[[ftype]] <- names(clustassess_object$feature_stability$by_steps[[ftype]])
fsize_index <- 1
upper_limit <- length(clustassess_object$feature_stability$incremental[[ftype]])
for (fsize in names(clustassess_object$feature_stability$by_steps[[ftype]])) {
resolution_values <- union(resolution_values, names(clustassess_object$feature_stability$by_steps[[ftype]][[fsize]]))
summary_values_by_step <- rep(0, length(clustassess_object$feature_stability$by_steps[[ftype]][[fsize_index]]))
if (fsize_index <= upper_limit) {
summary_values_incremental <- rep(0, length(clustassess_object$feature_stability$incremental[[ftype]][[fsize_index]]))
}
res_index <- 1
for (resval in names(clustassess_object$feature_stability$by_steps[[ftype]][[fsize]])) {
ecc_by_step <- clustassess_object$feature_stability$by_steps[[ftype]][[fsize_index]][[resval]]$ecc
summary_values_by_step[res_index] <- summary_function(ecc_by_step)
res_dt_by_step <- data.frame(ecc = ecc_by_step, res = resval) # mb = mb if you want to also include the mb vector
if (res_index == 1) {
size_dt_by_step <- res_dt_by_step
} else {
size_dt_by_step <- rbind(size_dt_by_step, res_dt_by_step)
}
if (fsize_index <= upper_limit) {
ecc_incremental <- clustassess_object$feature_stability$incremental[[ftype]][[fsize_index]][[resval]]
summary_values_incremental[res_index] <- summary_function(ecc_incremental)
res_dt_incremental <- data.frame(ecc = ecc_incremental, res = resval) # mb = mb if you want to also include the mb vector
if (res_index == 1) {
size_dt_incremental <- res_dt_incremental
} else {
size_dt_incremental <- rbind(size_dt_incremental, res_dt_incremental)
}
}
res_index <- res_index + 1
}
size_dt_by_step[, "fsize"] <- fsize_index
summary_values_by_step <- data.frame(ecc = summary_values_by_step, fsize = fsize_index)
if (fsize_index == 1) {
ftype_dt_by_step <- size_dt_by_step
ftype_summary_dt_by_step <- summary_values_by_step
} else {
ftype_dt_by_step <- rbind(ftype_dt_by_step, size_dt_by_step)
ftype_summary_dt_by_step <- rbind(ftype_summary_dt_by_step, summary_values_by_step)
}
if (fsize_index > upper_limit) {
next
}
size_dt_incremental[, "fsize"] <- fsize_index
summary_values_incremental <- data.frame(ecc = summary_values_incremental, fsize = fsize_index)
if (fsize_index == 1) {
ftype_dt_incremental <- size_dt_incremental
ftype_summary_dt_incremental <- summary_values_incremental
} else {
ftype_dt_incremental <- rbind(ftype_dt_incremental, size_dt_incremental)
ftype_summary_dt_incremental <- rbind(ftype_summary_dt_incremental, summary_values_incremental)
}
fsize_index <- fsize_index + 1
}
ftype_dt_by_step[, "ftype"] <- ftype
ftype_dt_incremental[, "ftype"] <- ftype
ftype_summary_dt_by_step[, "ftype"] <- ftype
ftype_summary_dt_incremental[, "ftype"] <- ftype
if (ftype_index == 1) {
overall_dtable_by_step <- ftype_dt_by_step
overall_dtable_incremental <- ftype_dt_incremental
overall_summary_dt_by_step <- ftype_summary_dt_by_step
overall_summary_dt_incremental <- ftype_summary_dt_incremental
} else {
overall_dtable_by_step <- rbind(overall_dtable_by_step, ftype_dt_by_step)
overall_dtable_incremental <- rbind(overall_dtable_incremental, ftype_dt_incremental)
overall_summary_dt_by_step <- rbind(overall_summary_dt_by_step, ftype_summary_dt_by_step)
overall_summary_dt_incremental <- rbind(overall_summary_dt_incremental, ftype_summary_dt_incremental)
}
ftype_index <- ftype_index + 1
}
feature_ordering$resolution <- stringr::str_sort(resolution_values, numeric = TRUE)
# split the data tables by resolution
clustassess_object$feature_stability$by_steps <- lapply(feature_ordering$resolution, function(resval) {
subdt <- overall_dtable_by_step %>% dplyr::filter(.data$res == resval) # %>% dplyr::arrange(order(.data$ecc))
subdt$fsize <- factor(subdt$fsize)
subdt$resval <- NULL
return(subdt)
})
names(clustassess_object$feature_stability$by_steps) <- feature_ordering$resolution
clustassess_object$feature_stability$incremental <- lapply(feature_ordering$resolution, function(resval) {
subdt <- overall_dtable_incremental %>%
dplyr::filter(.data$res == resval) %>%
dplyr::arrange(order(.data$ecc))
subdt$fsize <- factor(subdt$fsize)
return(subdt)
})
names(clustassess_object$feature_stability$incremental) <- feature_ordering$resolution
clustassess_object$feature_stability$overall <- list(
by_step = overall_summary_dt_by_step,
incremental = overall_summary_dt_incremental
)
# store the names and ordering of the stable feature sizes
for (ftype in names(feature_ordering$original)) {
nsteps <- length(clustassess_object[[ftype]]) - 1
feature_ordering$stable[[ftype]] <- names(clustassess_object[[ftype]])[seq_len(nsteps)]
feature_ordering$original_incremental[[ftype]] <- rep(0, length(feature_ordering$original[[ftype]]) - 1)
for (fsize_index in seq_len(length(feature_ordering$original[[ftype]]) - 1)) {
feature_ordering$original_incremental[[ftype]][fsize_index] <- paste(
feature_ordering$original[[ftype]][fsize_index],
feature_ordering$original[[ftype]][fsize_index + 1],
sep = "-"
)
}
}
# ---
# create the clustering data tables
# ecc_by_k_dt - columns: clustering method, k and ecc
# ecc_by_res_dt - columns: clustering method, res and ecc
for (ftype in names(feature_ordering$stable)) {
for (fsize in feature_ordering$stable[[ftype]]) {
# remove the adjacency matrix, not needed for the shiny app
clustassess_object[[ftype]][[fsize]]$adj_matrix <- NULL
mbs_list <- list()
ecc_list <- list()
ecc_list_by_res <- list()
ecc_order_list <- list()
ecc_order_list_by_res <- list()
structure_list <- list()
# remove the list of unecessary partitions
cl_methods <- names(clustassess_object[[ftype]][[fsize]]$clustering_stability$split_by_k)
first_dt_by_k <- TRUE
first_dt_by_res <- TRUE
# algorithm_names_mapping
for (cl_method in cl_methods) {
cl_method_index <- algorithm_names_mapping[[cl_method]]
# --- split by resolution ---
for (res in names(clustassess_object[[ftype]][[fsize]]$clustering_stability$split_by_resolution[[cl_method]])) {
# update the ecc lists for the boxplots
ecc <- clustassess_object[[ftype]][[fsize]]$clustering_stability$split_by_resolution[[cl_method]][[res]]$ecc
ecc_order <- order(ecc)
res_format <- sprintf("%.6f", as.numeric(res))
ecc_list_by_res[[paste(res_format, cl_method, sep = ";")]] <- ecc[ecc_order]
ecc_order_list_by_res[[paste(res_format, cl_method, sep = ";")]] <- Matrix::invPerm(ecc_order)
# create the summary table for the complex plot
for (n_clusters in names(clustassess_object[[ftype]][[fsize]]$clustering_stability$split_by_resolution[[cl_method]][[res]]$clusters)) {
temp_by_res_summary <- data.frame(
k = as.integer(n_clusters),
res = as.numeric(res),
cl_method = cl_method,
first_freq = clustassess_object[[ftype]][[fsize]]$clustering_stability$split_by_resolution[[cl_method]][[res]]$clusters[[n_clusters]]$partitions[[1]]$freq,
total_freq = sum(
sapply(
clustassess_object[[ftype]][[fsize]]$clustering_stability$split_by_resolution[[cl_method]][[res]]$clusters[[n_clusters]]$partitions,
function(x) {
x$freq
}
)
),
ecc = summary_function(clustassess_object[[ftype]][[fsize]]$clustering_stability$split_by_resolution[[cl_method]][[res]]$clusters[[n_clusters]]$ecc)
)
if (first_dt_by_res) {
first_dt_by_res <- FALSE
by_res_summary <- temp_by_res_summary
} else {
by_res_summary <- rbind(by_res_summary, temp_by_res_summary)
}
}
}
# --- split by k ---
structure_list[[cl_method]] <- names(clustassess_object[[ftype]][[fsize]]$clustering_stability$split_by_k[[cl_method]])
for (n_clusters in structure_list[[cl_method]]) {
unique_n_colors <- union(unique_n_colors, n_clusters)
mbs_list[[cl_method]][[n_clusters]] <- as.integer(clustassess_object[[ftype]][[fsize]]$clustering_stability$split_by_k[[cl_method]][[n_clusters]]$partitions[[1]]$mb)
ecc <- clustassess_object[[ftype]][[fsize]]$clustering_stability$split_by_k[[cl_method]][[n_clusters]]$ecc
ecc_order <- order(ecc)
n_clusters_format <- sprintf("%06d", as.integer(n_clusters))
ecc_list[[paste(n_clusters_format, cl_method, sep = ";")]] <- ecc[ecc_order]
ecc_order_list[[paste(n_clusters_format, cl_method, sep = ";")]] <- Matrix::invPerm(ecc_order)
temp_by_k_summary <- data.frame(
k = as.integer(n_clusters),
cl_method = cl_method,
n_partitions = length(clustassess_object[[ftype]][[fsize]]$clustering_stability$split_by_k[[cl_method]][[n_clusters]]$partitions),
total_freq = sum(
sapply(
clustassess_object[[ftype]][[fsize]]$clustering_stability$split_by_k[[cl_method]][[n_clusters]]$partitions,
function(x) {
x$freq
}
)
),
first_freq = clustassess_object[[ftype]][[fsize]]$clustering_stability$split_by_k[[cl_method]][[n_clusters]]$partitions[[1]]$freq,
ecc = summary_function(ecc)
)
if (first_dt_by_k) {
first_dt_by_k <- FALSE
by_k_summary <- temp_by_k_summary
} else {
by_k_summary <- rbind(by_k_summary, temp_by_k_summary)
}
}
}
clustassess_object[[ftype]][[fsize]]$clustering_stability$split_by_k <- list(
mbs = mbs_list,
summary = by_k_summary %>% dplyr::arrange(.data$k, .data$cl_method),
ecc = ecc_list,
ecc_order = ecc_order_list,
structure_list = structure_list
)
clustassess_object[[ftype]][[fsize]]$clustering_stability$split_by_resolution <- list(
summary = by_res_summary %>% dplyr::arrange(.data$res, .data$cl_method),
ecc = ecc_list_by_res,
ecc_order = ecc_order_list_by_res
)
}
}
unique_n_colors <- union(unique_n_colors, 1:4)
unique_colors <- lapply(unique_n_colors, function(n) {
n <- as.integer(n)
if (n == 1) {
return(single_color)
}
generate_colours(n, qualpalr_colorspace)
})
names(unique_colors) <- as.character(unique_n_colors)
clustassess_object$feature_ordering <- feature_ordering
feature_names <- names(feature_ordering$original)
# should sparse matrix be used for storing?
# advantages: lower required space
# disadvantages: would the rows be as easily accesible as in a normal matrix?
print(glue::glue("[{Sys.time()}] Removing the genes from the expression matrix with low variance"))
num_rows <- nrow(expression_matrix)
num_chunks <- ceiling(num_rows / chunk_size)
dense_chunks <- lapply(seq_len(num_chunks), function(i) {
start_row <- (i - 1) * chunk_size + 1
end_row <- min(i * chunk_size, num_rows)
chunk_matrix <- as.matrix(expression_matrix[start_row:end_row, ])
gene_vars <- matrixStats::rowVars(chunk_matrix)
# filter by var threshold
chunk_matrix[gene_vars > gene_variance_threshold, ]
})
print("merging chunks")
expression_matrix <- do.call(rbind, dense_chunks)
print("chunks merged")
gene_avg_expression <- matrixStats::rowMeans2(expression_matrix)
order_expression <- order(gene_avg_expression, decreasing = TRUE)
# order the genes based on their average expression
expression_matrix <- expression_matrix[order_expression, ]
gene_avg_expression <- gene_avg_expression[order_expression]
print(glue::glue("[{Sys.time()}] Writing the gene matrix"))
rhdf5::h5createFile(expr_file_name)
rhdf5::h5createDataset(expr_file_name, "rank_matrix",
level = compression_level,
dims = c(nrow(expression_matrix), ncol(expression_matrix)),
storage.mode = "integer",
chunk = c(chunk_size, ncol(expression_matrix))
)
rhdf5::h5createDataset(expr_file_name, "expression_matrix",
level = compression_level,
dims = c(nrow(expression_matrix), ncol(expression_matrix)),
maxdims = c(nrow(expression_matrix), ncol(expression_matrix)),
storage.mode = "double",
chunk = c(1, ncol(expression_matrix))
)
rhdf5::h5write(rownames(expression_matrix), expr_file_name, "genes")
rhdf5::h5write(colnames(expression_matrix), expr_file_name, "cells")
rhdf5::h5write(gene_avg_expression, expr_file_name, "average_expression")
rhdf5::h5write(chunk_size, expr_file_name, "chunk_size")
rhdf5::h5write(expression_matrix, expr_file_name, "expression_matrix")
print(glue::glue("[{Sys.time()}] Writing the rank matrix"))
nchunks <- ceiling(nrow(expression_matrix) / chunk_size)
for (i in seq_len(nchunks - 1)) {
index_list <- seq(from = chunk_size * (i - 1) + 1, by = 1, length.out = chunk_size)
rhdf5::h5write(
t(apply(
expression_matrix[index_list, ],
1,
function(x) {
rank(x, ties.method = "min")
}
)),
expr_file_name,
"rank_matrix",
index = list(index_list, NULL)
)
}
index_list <- seq(from = chunk_size * (nchunks - 1) + 1, by = 1, to = nrow(expression_matrix))
if (length(index_list) == 1) {
rhdf5::h5write(
rank(expression_matrix[index_list, ], ties.method = "min"),
expr_file_name,
"rank_matrix",
index = list(index_list, NULL)
)
} else {
rhdf5::h5write(
t(apply(
expression_matrix[index_list, ],
1,
function(x) {
rank(x, ties.method = "min")
}
)),
expr_file_name,
"rank_matrix",
index = list(index_list, NULL)
)
}
print(glue::glue("[{Sys.time()}] Writing the feature stability"))
# the object for stability
rhdf5::h5createFile(stability_file_name)
rhdf5::h5write(
clustassess_object$feature_stability,
stability_file_name,
"feature_stability",
level = compression_level
)
rhdf5::h5write(clustassess_object$feature_ordering, stability_file_name, "feature_ordering", level = compression_level)
print(glue::glue("[{Sys.time()}] Writing the stability object"))
for (feature_type in names(clustassess_object$feature_ordering[[1]])) {
rhdf5::h5write(clustassess_object[[feature_type]], stability_file_name, feature_type, level = compression_level)
}
rhdf5::h5write(unique_colors, stability_file_name, "colors", level = compression_level)
print(glue::glue("[{Sys.time()}] Done"))
rhdf5::h5closeAll()
}
#' @rdname write_shiny_app
#' @export
write_shiny_app.Seurat <- function(object,
metadata = NULL,
assay_name,
clustassess_object,
project_folder,
compression_level = 6,
summary_function = stats::median,
shiny_app_title = "",
organism_enrichment = "hsapiens",
height_ratio = 0.6,
qualpalr_colorspace = "pretty") {
write_shiny_app(
object = object@assays[[assay_name]]@data,
metadata = object@meta.data,
clustassess_object = clustassess_object,
project_folder = project_folder,
compression_level = compression_level,
summary_function = summary_function,
shiny_app_title = shiny_app_title,
organism_enrichment = organism_enrichment,
height_ratio = height_ratio,
qualpalr_colorspace = qualpalr_colorspace
)
}
#' @rdname write_shiny_app
#' @export
write_shiny_app.default <- function(object,
metadata = NULL,
assay_name = NULL,
clustassess_object,
project_folder,
compression_level = 6,
summary_function = stats::median,
shiny_app_title = "",
organism_enrichment = "hsapiens",
height_ratio = 0.6,
qualpalr_colorspace = "pretty") {
# nFeature <- DelayedMatrixStats::colSums2(object > 0)
if (inherits(object, "dgCMatrix")) {
nFeature <- Matrix::colSums(object > 0)
} else {
nFeature <- matrixStats::colSums2(object > 0)
}
warning_message <- ""
shiny_app_title <- paste("ClustAssess ShinyApp -", shiny_app_title)
for (ftype in names(clustassess_object$feature_stability$by_steps)) {
fsizes <- as.integer(names(clustassess_object$feature_stability$by_steps[[ftype]]))
fsizes <- fsizes[which(fsizes > stats::median(nFeature))]
if (length(fsizes) > 0) {
warning_message <- paste0(warning_message, ftype, " - ", paste(fsizes, collapse = ", "), "; ")
}
}
if (stringr::str_length(warning_message) > 0) {
while (TRUE) {
warning(glue::glue("WARNING: The following configurations -- {warning_message} have a size above the average number of nFeatures per cell - {median(nFeature)}.\nIncreasing the number of features above the average will lead to introduction of noise in the data, thus we recommed re-running ClustAssess with lower values for the feature steps.\nPlease type `yes` or `no` if you want to continue creating the ClustAssess shiny app."), immediate. = TRUE)
if (interactive()) {
user_input <- readline()
} else {
user_input <- readLines("stdin", n = 1)
}
if (user_input == "no") {
return()
}
if (user_input == "yes") {
break
}
}
}
if (!dir.exists(project_folder)) {
dir.create(project_folder)
}
write_objects(
clustassess_object = clustassess_object,
expression_matrix = object,
metadata = metadata,
project_folder = project_folder,
compression_level = compression_level,
summary_function = summary_function,
qualpalr_colorspace = qualpalr_colorspace
)
file_content <- paste0("
library(ggplot2)
library(shiny)
library(shinyjs)
library(rhdf5)
library(ClustAssess)
library(dplyr)
tabs_numbers <- seq_len(6)
names(tabs_numbers) <- c(
\"Home\",
\"Dimensionality Reduction\",
\"Graph Construction\",
\"Graph Clustering\",
\"Comparison\",
\"Sandbox\"
)
ui <- fluidPage(
tags$head(
tags$style(
HTML(
\".first-element-tab {
margin-top: 150px;
}\",
\".page-info {
top: 0px;
margin-top: 55px;
position: fixed;
z-index: 100;
}\",
\"#tabset_id {
position: fixed;
width: 100%;
background-color: white;
top: 0;
z-index: 100;
font-size: 20px;
margin-left: 40px;
margin-top: 50px;
}\",
\".show_config {
z-index: 10000;
position: fixed;
top: 10px;
font-size: 15px;
right: 25px;
}\",
\".shiny-split-layout > div {
overflow: visible;
white-space: normal;
}\",
\"div.vertical-line{
width: 1px; /* Line width */
background-color: black; /* Line color */
height: 100%; /* Override in-line if you want specific height. */
float: left; /* Causes the line to float to left of content.
You can instead use position:absolute or display:inline-block
if this fits better with your design */
}\"
)
)
),
tags$head(tags$script(HTML('
var dimension = [0, 0];
var resizeId;
$(document).on(\"shiny:connected\", function(e) {
dimension[0] = Math.max(window.innerWidth - 20, 400);
dimension[1] = Math.max(window.innerHeight - 30, 400);
Shiny.onInputChange(\"dimension\", dimension);
});
function transferWindowSize() {
console.log(dimension);
console.log(window.innerHeight);
let dif_width = Math.abs(Math.max(window.innerWidth - 20, 400) - dimension[0]);
let dif_height = Math.abs(Math.max(window.innerHeight - 30, 400) - dimension[1]);
console.log(dif_height);
if (dif_width >= 200 || dif_height >= 200) {
console.log(\"Changed\")
dimension[0] = Math.max(window.innerWidth - 20, 400);
dimension[1] = Math.max(window.innerHeight - 30, 400);
Shiny.onInputChange(\"dimension\", dimension);
}
}
$(window).resize(function() {
clearTimeout(resizeId);
resizeId = setTimeout(transferWindowSize, 500);
});
'))),
tags$head(
tags$link(rel = \"stylesheet\", type = \"text/css\", href = \"www/shiny.css\")
),
useShinyjs(),
navbarPage(\"", shiny_app_title, "\", windowTitle = \"", shiny_app_title, "\", position = \"fixed-top\", inverse = TRUE),
tabsetPanel(
id = \"tabset_id\",
ui_landing_page(\"landing_page\"),
ui_dimensionality_reduction(\"dim_reduc\"),
ui_graph_construction(\"graph_constr\"),
ui_graph_clustering(\"graph_clust\"),
ui_comparisons(\"comparison\"),
ui_sandbox(\"sandbox\")
)
)
server <- function(input, output, session) {
hideTab(\"tabset_id\", \"Dimensionality Reduction\")
hideTab(\"tabset_id\", \"Graph Construction\")
hideTab(\"tabset_id\", \"Graph Clustering\")
hideTab(\"tabset_id\", \"Comparison\")
hideTab(\"tabset_id\", \"Sandbox\")
fchoice <- reactiveVal(
list(
chosen_feature_type = \"Highly_Variable\",
chosen_set_size = \"1500\"
)
)
cchoice <- reactiveVal()
height_ratio <- ", height_ratio, " # used to control the height of the plot proportional to the window's height
observe({
runjs(\"window.scrollTo(0, 0)\")
tab_number <- as.integer(tabs_numbers[input$tabset_id])
print(tab_number)
if (tab_number == 1) {
server_landing_page(\"landing_page\", height_ratio, reactive(input$dimension), session, \"", organism_enrichment, "\")
}
if (tab_number == 2) {
fchoice(server_dimensionality_reduction(\"dim_reduc\", session))
}
if (tab_number == 3) {
server_graph_construction(\"graph_constr\", fchoice())
}
if (tab_number == 4) {
cchoice(server_graph_clustering(\"graph_clust\", fchoice(), session))
}
if (tab_number == 5) {
server_comparisons(\"comparison\", fchoice(), cchoice())
}
if (tab_number == 6) {
server_sandbox(\"sandbox\")
}
}) %>% bindEvent(input$tabset_id)
}
shinyApp(ui, server)
")
write(file_content, file.path(project_folder, "app.R"))
styler::style_file(file.path(project_folder, "app.R"))
}
#' Add metadata to ClustAssess ShinyApp
#'
#' @description Adds new metadata into the ClustAssess ShinyApp without having
#' to update the object and re-create the app.
#'
#' @param app_folder The folder containing the ClustAssess ShinyApp
#' @param metadata The new metadata to be added. This parameter should be a
#' dataframe that follows the same row ordering as the already existing
#' metadata from the ClustAssess app.
#' @param qualpalr_colorspace The colorspace to be used for the metadata
#'
#' @return NULL - the metadata object is updated in the app folder
#'
#' @export
add_metadata <- function(app_folder,
metadata,
qualpalr_colorspace = "pretty") {
metadata_file_name <- file.path(app_folder, "metadata.rds")
if (!file.exists(metadata_file_name)) {
quit(glue::glue("The app folder {app_folder} should contain a file named `metadata.rds`!"))
}
if (!is.data.frame(metadata)) {
quit("The `metadata` object should be a dataframe!")
}
existing_metadata <- readRDS(metadata_file_name)
metadata_columns <- colnames(metadata)
for (mtd_col in metadata_columns) {
if (is.factor(metadata[, mtd_col])) {
metadata[, mtd_col] <- droplevels(metadata[, mtd_col])
existing_metadata$metadata_unique[[mtd_col]] <- levels(metadata[, mtd_col])
if (length(existing_metadata$metadata_unique[[mtd_col]]) > 502) {
next
}
existing_metadata$metadata_colors[[mtd_col]] <- generate_colours(length(existing_metadata$metadata_unique[[mtd_col]]), qualpalr_colorspace)
} else if (is.character(metadata[, mtd_col])) {
metadata[, mtd_col] <- factor(metadata[, mtd_col])
existing_metadata$metadata_unique[[mtd_col]] <- levels(metadata[, mtd_col])
if (length(existing_metadata$metadata_unique[[mtd_col]]) > 502) {
next
}
existing_metadata$metadata_colors[[mtd_col]] <- generate_colours(length(existing_metadata$metadata_unique[[mtd_col]]), qualpalr_colorspace)
} else if (is.logical(metadata[, mtd_col])) {
existing_metadata$metadata_unique[[mtd_col]] <- c(FALSE, TRUE)
existing_metadata$metadata_colors[[mtd_col]] <- qualpalr::qualpal(2, colorspace = qualpalr_colorspace)$hex
}
existing_metadata$metadata[[mtd_col]] <- metadata[, mtd_col]
}
saveRDS(existing_metadata, metadata_file_name)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.