R/NormalyzerStatistics.R

Defines functions calculateLimmaContrast calculateWelch setupModel verifyContrasts NormalyzerStatistics

Documented in NormalyzerStatistics verifyContrasts

#' Class representing a dataset for statistical processing in NormalyzerDE
#' 
#' Is initialized with an annotation matrix, a data matrix and a design
#' data frame. This object can subsequently be processed to generate statistical
#' values and in turn used to write a full matrix with additional statistical
#' information as well as a graphical report of the comparisons.
#' 
#' @slot annotMat Matrix containing annotation information
#' @slot dataMat Matrix containing (normalized) expression data
#' @slot filteredDataMat Filtered matrix with low-count rows removed
#' @slot designDf Data frame containing design conditions
#' @slot filteringContrast Vector showing which entries are filtered 
#'   (due to low count)
#' @slot pairwiseCompsP List with P-values for pairwise comparisons
#' @slot pairwiseCompsFdr List with FDR-values for pairwise comparisons
#' @slot pairwiseCompsAve List with average expression values
#' @slot pairwiseCompsFold List with log2 fold-change values for pairwise 
#'   comparisons
#' @slot contrasts Spot for saving vector of last used contrasts
#' @slot condCol Column containing last used conditions
#' @slot batchCol Column containing last used batch conditions
NormalyzerStatistics <- setClass("NormalyzerStatistics",
                                 slots = c(
                                     annotMat = "matrix",
                                     dataMat = "matrix",
                                     designDf = "data.frame",

                                     pairwiseCompsP = "list",
                                     pairwiseCompsFdr = "list",
                                     pairwiseCompsAve = "list",
                                     pairwiseCompsFold = "list",
                                     pairwiseCompsSig = "list",
                                     
                                     comparisons = "character",
                                     condCol = "character",
                                     batchCol = "numeric"
                                 ))

#' Constructor for NormalyzerStatistics
#' 
#' @param experimentObj Instance of SummarizedExperiment containing matrix
#'   and design information as column data
#' @param logTrans Whether the input data should be log transformed
#' @return nds Generated NormalyzerStatistics instance
#' @export
#' @examples
#' data(example_stat_summarized_experiment)
#' nst <- NormalyzerStatistics(example_stat_summarized_experiment)
NormalyzerStatistics <- function(experimentObj, logTrans=FALSE) { 

              dataMat <- SummarizedExperiment::assay(experimentObj)
              if (logTrans) {
                  dataMat <- log2(dataMat)
              }
              
              annotMat <- SummarizedExperiment::rowData(experimentObj)
              designDf <- SummarizedExperiment::colData(experimentObj)

              nst <- new("NormalyzerStatistics",
                         annotMat=as.matrix(annotMat), 
                         dataMat=as.matrix(dataMat), 
                         designDf=as.data.frame(designDf)
              )

              nst
          }

setGeneric("condCol", function(object) { standardGeneric("condCol") })
setMethod("condCol", signature(object="NormalyzerStatistics"), 
          function(object) { slot(object, "condCol") })
setGeneric("condCol<-", function(object, value) { standardGeneric("condCol<-") })
setReplaceMethod("condCol", signature(object="NormalyzerStatistics"), 
                 function(object, value) { 
                     slot(object, "condCol") <- value
                     validObject(object)
                     object
                 })

setGeneric("batchCol", function(object) { standardGeneric("batchCol") })
setMethod("batchCol", signature(object="NormalyzerStatistics"), 
          function(object) { slot(object, "batchCol") })
setGeneric("batchCol<-", function(object, value) { standardGeneric("batchCol<-") })
setReplaceMethod("batchCol", signature(object="NormalyzerStatistics"), 
                 function(object, value) { 
                     slot(object, "batchCol") <- value
                     validObject(object)
                     object
                 })

setGeneric("comparisons", function(object) { standardGeneric("comparisons") })
setMethod("comparisons", signature(object="NormalyzerStatistics"), 
          function(object) { slot(object, "comparisons") })
setGeneric("comparisons<-", function(object, value) { standardGeneric("comparisons<-") })
setReplaceMethod("comparisons", signature(object="NormalyzerStatistics"), 
                 function(object, value) { 
                     slot(object, "comparisons") <- value
                     validObject(object)
                     object
                 })

setGeneric("annotMat", function(object) { standardGeneric("annotMat") })
setMethod("annotMat", signature(object="NormalyzerStatistics"), 
          function(object) { slot(object, "annotMat") })

setGeneric("dataMat", function(object) { standardGeneric("dataMat") })
setMethod("dataMat", signature(object="NormalyzerStatistics"), 
          function(object) { slot(object, "dataMat") })
setGeneric("dataMat<-", function(object, value) { standardGeneric("dataMat<-") })
setReplaceMethod("dataMat", signature(object="NormalyzerStatistics"), 
                 function(object, value) { 
                     
                     slot(object, "dataMat") <- value
                     validObject(object)
                     object
                 })

setGeneric("filteredDataMat", function(object) { standardGeneric("filteredDataMat") })
setMethod("filteredDataMat", signature(object="NormalyzerStatistics"), 
          function(object) { slot(object, "filteredDataMat") })

setGeneric("designDf", function(object) { standardGeneric("designDf") })
setMethod("designDf", signature(object="NormalyzerStatistics"), 
          function(object) { slot(object, "designDf") })
setGeneric("designDf<-", function(object, value) { standardGeneric("designDf<-") })
setReplaceMethod("designDf", signature(object="NormalyzerStatistics"), 
                 function(object, value) { 
                     slot(object, "designDf") <- value
                     validObject(object)
                     object
                 })

setGeneric("filteringContrast", function(object) { standardGeneric("filteringContrast") })
setMethod("filteringContrast", signature(object="NormalyzerStatistics"), 
          function(object) { slot(object, "filteringContrast") })

setGeneric("pairwiseCompsP", function(object) { standardGeneric("pairwiseCompsP") })
setMethod("pairwiseCompsP", signature(object="NormalyzerStatistics"), 
          function(object) { slot(object, "pairwiseCompsP") })
setGeneric("pairwiseCompsP<-", function(object, value) { standardGeneric("pairwiseCompsP<-") })
setReplaceMethod("pairwiseCompsP", signature(object="NormalyzerStatistics"), 
                 function(object, value) { 
                     slot(object, "pairwiseCompsP") <- value
                     validObject(object)
                     object
                 })

setGeneric("pairwiseCompsFdr", function(object) { standardGeneric("pairwiseCompsFdr") })
setMethod("pairwiseCompsFdr", signature(object="NormalyzerStatistics"), 
          function(object) { slot(object, "pairwiseCompsFdr") })
setGeneric("pairwiseCompsFdr<-", function(object, value) { standardGeneric("pairwiseCompsFdr<-") })
setReplaceMethod("pairwiseCompsFdr", signature(object="NormalyzerStatistics"), 
                 function(object, value) { 
                     slot(object, "pairwiseCompsFdr") <- value
                     validObject(object)
                     object
                 })

setGeneric("pairwiseCompsAve", function(object) { standardGeneric("pairwiseCompsAve") })
setMethod("pairwiseCompsAve", signature(object="NormalyzerStatistics"), 
          function(object) { slot(object, "pairwiseCompsAve") })
setGeneric("pairwiseCompsAve<-", function(object, value) { standardGeneric("pairwiseCompsAve<-") })
setReplaceMethod("pairwiseCompsAve", signature(object="NormalyzerStatistics"), 
                 function(object, value) { 
                     slot(object, "pairwiseCompsAve") <- value
                     validObject(object)
                     object
                 })

setGeneric("pairwiseCompsFold", function(object) { standardGeneric("pairwiseCompsFold") })
setMethod("pairwiseCompsFold", signature(object="NormalyzerStatistics"), 
          function(object) { slot(object, "pairwiseCompsFold") })
setGeneric("pairwiseCompsFold<-", function(object, value) { standardGeneric("pairwiseCompsFold<-") })
setReplaceMethod("pairwiseCompsFold", signature(object="NormalyzerStatistics"), 
                 function(object, value) { 
                     slot(object, "pairwiseCompsFold") <- value
                     validObject(object)
                     object
                 })


#' Performs statistical comparisons between the supplied conditions.
#' It uses the design matrix and data matrix in the supplied 
#' NormalyzerStatistics object. A column is supplied specifying which of the
#' columns in the design matrix that is used for deciding the sample groups.
#' The comparisons vector specifies which pairwise comparisons between
#' condition levels that are to be calculated.
#' 
#' Optionally, a batch column can be specified allowing compensation for
#' covariate variation in the statistical model. This is only compatible
#' with a Limma-based statistical analysis.
#'
#' @param nst Results evaluation object.
#' @param comparisons String with comparisons for contrasts.
#' @param condCol Column name in design matrix containing condition information.
#' @param batchCol Column name in design matrix containing batch information.
#' @param splitter Character dividing contrast conditions.
#' @param type Type of statistical test (Limma or welch).
#' @param leastRepCount Least replicates in each group to be retained for 
#'   contrast calculations
#' @return nst Statistics object with statistical measures calculated
#' @rdname calculateContrasts 
#' @export
#' @examples
#' data(example_stat_summarized_experiment)
#' nst <- NormalyzerStatistics(example_stat_summarized_experiment)
#' results <- calculateContrasts(nst, c("1-2", "2-3"), "group")
#' resultsBatch <- calculateContrasts(nst, c("1-2", "2-3"), "group", batchCol="batch")
setGeneric(name="calculateContrasts", 
           function(nst, comparisons, condCol, batchCol=NULL, splitter="-", 
                    type="limma", leastRepCount=1) standardGeneric("calculateContrasts"))

#' @rdname calculateContrasts
setMethod(f="calculateContrasts", 
          signature=c("NormalyzerStatistics"),
          function(nst, comparisons, condCol, batchCol=NULL, splitter="-", 
                   type="limma", leastRepCount=1) {
              
              dataMat <- dataMat(nst)
              designDf <- designDf(nst)

              comparisons(nst) <- comparisons
              condCol(nst) <- as.character(designDf[, condCol])

              if (!is.null(batchCol)) {
                  conditionCombs <- paste(designDf[, condCol], designDf[, batchCol], sep="_")
                  batchCol(nst) <- as.factor(designDf[, batchCol])
              }
              else {
                  conditionCombs <- designDf[, condCol]
                  batchCol(nst) <- numeric()
              }
              
              rownames(dataMat) <- seq_len(nrow(dataMat))
              dataMatNAFiltered <- filterLowRep(
                  dataMat, 
                  conditionCombs, 
                  leastRep=leastRepCount
              )
              
              if (nrow(dataMatNAFiltered) == 0) {
                  stop("No rows remained after NA-filtering for condition: '", 
                       condCol, 
                       "' and batchCol: '", batchCol, "' (if empty then batchCol is not specified)\n",
                       "Consider whether you can reduce the 'leastRepCount' setting which sets the lower limit ",
                       "of number of NA values in each condition-level combination ",
                       "You could also try running without batchCol and see if there is enough data per condition then"
                       )
              }
              
              naFilterContrast <- rownames(dataMat) %in% rownames(dataMatNAFiltered)
              sampleReplicateGroupsStrings <- as.character(designDf(nst)[, condCol])
              statMeasures <- c("P", "FDR", "Ave", "Fold")
              
              verifyContrasts(sampleReplicateGroupsStrings, comparisons)
              
              model <- setupModel(nst, condCol, batchCol=batchCol, type=type)

              if (type %in% c("limma", "limma_intensity")) {
                  limmaDesign <- stats::model.matrix(model)
                  limmaFit <- limma::lmFit(dataMatNAFiltered, limmaDesign)
              }
              
              compLists <- list()
              for (statMeasure in statMeasures) {
                  compLists[[statMeasure]] <- list()
              }

              for (comp in comparisons) {
                  
                  compSplit <- unlist(strsplit(comp, splitter))
                  
                  if (length(compSplit) != 2) {
                      stop("Comparison should be in format cond1-cond2 ", 
                           "here the split product was: ", 
                           paste(compSplit, collapse=" "))
                  }
                  
                  level1 <- compSplit[1]
                  level2 <- compSplit[2]
                  
                  if (length(sampleReplicateGroupsStrings %in% level1) == 0) {
                      stop("No samples matching condition ", 
                           level1, 
                           " found in conditions: ", 
                           paste(sampleReplicateGroupsStrings, collapse=" "))
                  }
                  
                  if (length(sampleReplicateGroupsStrings %in% level2) == 0) {
                      stop("No samples matching condition ", 
                           level2, " found in conditions: ", 
                           paste(sampleReplicateGroupsStrings, collapse=" "))
                  }
                  
                  if (type == "welch") {
                      statResults <- calculateWelch(
                          dataMatNAFiltered, 
                          sampleReplicateGroupsStrings, 
                          c(level1, level2))
                  }
                  else if (type == "limma") {
                      
                      statResults <- calculateLimmaContrast(
                          dataMatNAFiltered, 
                          limmaDesign, 
                          limmaFit, 
                          c(level1, level2), 
                          useIntensityTrend = FALSE)
                  }
                  else if (type == "limma_intensity") {
                      
                      statResults <- calculateLimmaContrast(
                          dataMatNAFiltered, 
                          limmaDesign, 
                          limmaFit, 
                          c(level1, level2), 
                          useIntensityTrend = TRUE)
                  }
                  else {
                      stop("Unknown statistics type: ", type)
                  }
                  
                  for (statMeasure in statMeasures) {
                      compLists[[statMeasure]][[comp]] <- c()
                      compLists[[statMeasure]][[comp]][naFilterContrast] <- statResults[[statMeasure]]
                  }
              }
              
              pairwiseCompsP(nst) <- compLists[["P"]]
              pairwiseCompsFdr(nst) <- compLists[["FDR"]]
              pairwiseCompsAve(nst) <- compLists[["Ave"]]
              pairwiseCompsFold(nst) <- compLists[["Fold"]]
              
              nst
          })


#' Check that a given contrast string is valid given a particular design
#' matrix. Each level tested for in the contrast should be present in the
#' condition column for the design matrix.
#' 
#' Mainly meant to verify strings received during server usage.
#'
#' @param designLevels Vector containing condition levels present in design
#' @param contrasts A string containing one or several (comma delimited)
#'   strings for which contrasts should be performed
#' @return None
#' @keywords internal
verifyContrasts <- function(designLevels, contrasts) {
    
    for (contrast in contrasts) {
        parts <- unlist(strsplit(contrast, "-"))
        
        if (length(parts) != 2) {
            stop("A contrast string delimited by one dash (-) was expected. Instead following was found: ", contrast)
        }
        
        if (!all(parts %in% designLevels)) {
            stop("There were issues in your contrast. \n", 
                 "All contrasts: ", paste(contrasts, collapse=", "), "\n",
                 "Part with issue: ", contrast, "\n", 
                 "Not all parts was found in the design column levels. Levels present in design: \n",
                 paste(unique(designLevels), collapse=", ")
                 )
        }
    }
}

setupModel <- function(nst, condCol, batchCol=NULL, type="limma") {
    
    if (is.null(batchCol)) {
        Variable <- as.factor(designDf(nst)[, condCol])
        model <- ~0+Variable
    }
    else {
        if (!(type %in% c("limma", "limma_intensity"))) {
            stop(
                "Batch compensation only compatible with Limma, got: ", 
                type
            )
        }
        Variable <- as.factor(designDf(nst)[, condCol])
        Batch <- as.factor(designDf(nst)[, batchCol])
        model <- ~0+Variable+Batch
    }
    model
}

calculateWelch <- function(dataMat, groupHeader, levels) {
    
    s1cols <- which(groupHeader %in% levels[1])
    s2cols <- which(groupHeader %in% levels[2])
    
    doTTest <- function(c1Vals, c2Vals, default=NA) {
        if (length(stats::na.omit(c1Vals)) > 1 && 
            length(stats::na.omit(c2Vals)) > 1) {
            tryCatch(stats::t.test(c1Vals, c2Vals)[[3]], error=function(x) NA)
        }
        else {
            NA
        }
    }
    
    welchPValCol <- apply(
        dataMat, 1, 
        function(row) doTTest(row[s1cols], row[s2cols], default=NA))
    welchFDRCol <- stats::p.adjust(welchPValCol, method="BH")
    
    statResults <- list()

    statResults[["P"]] <- welchPValCol
    statResults[["FDR"]] <- welchFDRCol
    statResults[["Ave"]] <- rowMeans(dataMat, na.rm=TRUE)
    statResults[["Fold"]] <- rowMeans(dataMat[, s1cols], na.rm=TRUE) - rowMeans(dataMat[, s2cols], na.rm=TRUE)

    statResults
}

calculateLimmaContrast <- function(dataMat, limmaDesign, limmaFit, levels, useIntensityTrend) {

    myContrast <- paste0("Variable", levels[1], "-", "Variable", levels[2])
    contrastMatrix <- limma::makeContrasts(
        contrasts=c(myContrast), 
        levels=limmaDesign)
    fitContrasts <- limma::contrasts.fit(limmaFit, contrastMatrix)
    fitBayes <- limma::eBayes(fitContrasts, trend=useIntensityTrend)
    limmaTable <- limma::topTable(fitBayes, coef=1, number=Inf, sort.by="none")

    statResults <- list()
    statResults[["P"]] <- limmaTable$P.Value
    statResults[["FDR"]] <- limmaTable$adj.P.Val
    statResults[["Ave"]] <- limmaTable$AveExpr
    statResults[["Fold"]] <- limmaTable$logFC
    statResults
}
ComputationalProteomics/NormalyzerDE documentation built on Oct. 18, 2024, 9:57 p.m.