getSmoothedRTNormalizedMatrix: Generate multiple RT time-window normalized matrices where...

View source: R/higherOrderNormMethods.R

getSmoothedRTNormalizedMatrixR Documentation

Generate multiple RT time-window normalized matrices where one is shifted. Merge them using a specified method (mean or median) and return the result.

Description

Uses the function getRTNormalizedMatrix to generate multiple normalized matrices which are shifted respective to each other and finally merged into a single matrix. This could potentially reduce effect of fluctuations within individual windows.

Usage

getSmoothedRTNormalizedMatrix(
  rawMatrix,
  retentionTimes,
  normMethod,
  stepSizeMinutes,
  windowShifts = 2,
  windowMinCount = 100,
  mergeMethod = "mean",
  noLogTransform = FALSE
)

Arguments

rawMatrix

Target matrix to be normalized

retentionTimes

Vector of retention times corresponding to rawMatrix

normMethod

The normalization method to apply to the time windows

stepSizeMinutes

Size of windows to be normalized

windowShifts

Number of frame shifts.

windowMinCount

Minimum number of features within window.

mergeMethod

Layer merging approach. Mean or median.

noLogTransform

Don't log transform the input

Value

Normalized matrix

Examples


data(example_data_small)
data(example_data_only_values)
data(example_design_small)
retentionTimes <- as.numeric(example_data[, "Average.RT"])
dataMat <- example_data_only_values
performCyclicLoessNormalization <- function(rawMatrix) {
    log2Matrix <- log2(rawMatrix)
    normMatrix <- limma::normalizeCyclicLoess(log2Matrix, method="fast")
    colnames(normMatrix) <- colnames(rawMatrix)
    normMatrix
}
rtNormMat <- getSmoothedRTNormalizedMatrix(dataMat, retentionTimes, 
    performCyclicLoessNormalization, stepSizeMinutes=1, windowMinCount=100, 
    windowShifts=2, mergeMethod="median")

ComputationalProteomics/NormalyzerDE documentation built on Oct. 18, 2024, 9:57 p.m.