#' Landscape Single Cell Entropy
#'
#' \pkg{LandSCENT} (Landscape Single Cell Entropy) is a R-package for the
#' analysis of single-cell RNA-Seq data. One important feature of this
#' package is the computation of signaling entropy, which allows single
#' cells to be ordered according to differentiation potency. \pkg{LandSCENT}
#' also integrates cell density with potency distribution to dissect cell types
#' across all potency states and generates high-quality figures to show this.
#'
#' \packageIndices{LandSCENT}
#' \pkg{LandSCENT} will be of interest to those analysing
#' single-cell RNA-Sequencing data. A core component of \pkg{LandSCENT}
#' is the computation of signaling entropy at the single-cell level
#' (\code{CompSRana}), allowing cells to be ordered according to
#' differentiation potency or phenotypic plasticity. It also incorporates
#' functionality for quantifying intercellular heterogeneity, for identifying
#' interesting subpopulations of cells that differ in terms of potency or
#' plasticity, as well as to infer dependencies between single cell
#' clusters, which for instance can help identify lineage trajectories.
#'
#' @name LandSCENT-package
#'
#' @docType package
#'
#' @author Weiyan Chen & Andrew E Teschendorff
#'
#' @references
#' Teschendorff AE, Tariq Enver.
#' \emph{Single-cell entropy for accurate estimation of differentiation
#' potency from a cell’s transcriptome.}
#' Nature communications 8 (2017): 15599.
#' doi:\href{https://doi.org/10.1038/ncomms15599}{
#' 10.1038/ncomms15599}.
#'
#' Teschendorff AE, Banerji CR, Severini S, Kuehn R, Sollich P.
#' \emph{Increased signaling entropy in cancer requires the scale-free
#' property of protein interaction networks.}
#' Scientific reports 5 (2015): 9646.
#' doi:\href{https://doi.org/10.1038/srep09646}{
#' 10.1038/srep09646}.
#'
#' Banerji, Christopher RS, et al.
#' \emph{Intra-tumour signalling entropy determines clinical outcome
#' in breast and lung cancer.}
#' PLoS computational biology 11.3 (2015): e1004115.
#' doi:\href{https://doi.org/10.1371/journal.pcbi.1004115}{
#' 10.1371/journal.pcbi.1004115}.
#'
#' Teschendorff, Andrew E., Peter Sollich, and Reimer Kuehn.
#' \emph{Signalling entropy: A novel network-theoretical framework
#' for systems analysis and interpretation of functional omic data.}
#' Methods 67.3 (2014): 282-293.
#' doi:\href{https://doi.org/10.1016/j.ymeth.2014.03.013}{
#' 10.1016/j.ymeth.2014.03.013}.
#'
#' Banerji, Christopher RS, et al.
#' \emph{Cellular network entropy as the energy potential in
#' Waddington's differentiation landscape.}
#' Scientific reports 3 (2013): 3039.
#' doi:\href{https://doi.org/10.1038/srep03039}{
#' 10.1038/srep03039}.
#'
#' @examples
#' ### see example for CompSRana function for typical workflow
#'
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.