Description Usage Arguments Value References Examples
This function leverages Pearson correlation between gene expresion level and gene connectome derived from PPI network to fastly estimate signaling entropy rate.
1 2 3 4 5 6 7 8 9 |
Integration.l |
A list object from |
data.m |
A scRNA-Seq data matrix with rows labeling genes and columns labeling single cells. And it can be either a log-transformed data matrix with minimal value around 0.1 (recommended), or an nonlog-transformed data matrix with minimal value 0. |
ppiA.m |
The adjacency matrix of a user-given PPI network with rownames and
colnames labeling genes (same gene identifier as in |
log_trans |
A logical. Whether to do log-transformation on the input data matrix or not. Default is FALSE |
parallelMode |
A logical. Indicating whether or not to run CCAT in parallel. It will be disable if datasets are < 5,000 cells. Parallel mode uses a subsampling approach to reduce runtime. Default is FALSE |
mcores |
A integer. Indicating the number of cores to use when parallelMode = TRUE |
subsamplesize |
A integer. Indicating the number of cells to subsample when parallelMode = TRUE |
A list incorporates the input list and CCAT velues or CCAT values itself, depending on the input object(s):
CCAT The estimated signaling entropy rate using Pearson correlation coefficient
Chen, Weiyan, et al. Single-cell landscape in mammary epithelium reveals bipotent-like cells associated with breast cancer risk and outcome. Communications Biology 2 (2019): 306. doi: 10.1038/s42003-019-0554-8.
Teschendorff Andrew E., Tariq Enver. Single-cell entropy for accurate estimation of differentiation potency from a cell’s transcriptome. Nature communications 8 (2017): 15599. doi: 10.1038/ncomms15599.
Teschendorff Andrew E., Banerji CR, Severini S, Kuehn R, Sollich P. Increased signaling entropy in cancer requires the scale-free property of protein interaction networks. Scientific reports 5 (2015): 9646. doi: 10.1038/srep09646.
Banerji, Christopher RS, et al. Intra-tumour signalling entropy determines clinical outcome in breast and lung cancer. PLoS computational biology 11.3 (2015): e1004115. doi: 10.1371/journal.pcbi.1004115.
Teschendorff, Andrew E., Peter Sollich, and Reimer Kuehn. Signalling entropy: A novel network-theoretical framework for systems analysis and interpretation of functional omic data. Methods 67.3 (2014): 282-293. doi: 10.1016/j.ymeth.2014.03.013.
Banerji, Christopher RS, et al. Cellular network entropy as the energy potential in Waddington's differentiation landscape. Scientific reports 3 (2013): 3039. doi: 10.1038/srep03039.
1 2 3 4 5 6 7 8 9 10 11 12 13 | ### load example data & network matrix
data(Example.m)
data(net13Jun12.m)
### integrate expr matrix and PPI network
Integration.l <- DoIntegPPI(exp.m = Example.m, ppiA.m = net13Jun12.m)
### estimate SR with PCC
### get it with the integration list
Integration.l <- CCAT(Integration.l)
### or get CCAT directly from data matrix
CCAT.v <- CCAT(data.m = Example.m, ppiA.m = net13Jun12.m)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.