CCAT: Correlation of Connectome And Transcriptome

Description Usage Arguments Value References Examples

View source: R/CCAT.R

Description

This function leverages Pearson correlation between gene expresion level and gene connectome derived from PPI network to fastly estimate signaling entropy rate.

Usage

1
2
3
4
5
6
7
8
9
CCAT(
  Integration.l = NULL,
  data.m = NULL,
  ppiA.m = NULL,
  log_trans = FALSE,
  parallelMode = FALSE,
  mcores = 1,
  subsamplesize = 1000
)

Arguments

Integration.l

A list object from DoIntegPPI function.

data.m

A scRNA-Seq data matrix with rows labeling genes and columns labeling single cells. And it can be either a log-transformed data matrix with minimal value around 0.1 (recommended), or an nonlog-transformed data matrix with minimal value 0.

ppiA.m

The adjacency matrix of a user-given PPI network with rownames and colnames labeling genes (same gene identifier as in exp.m)

log_trans

A logical. Whether to do log-transformation on the input data matrix or not. Default is FALSE

parallelMode

A logical. Indicating whether or not to run CCAT in parallel. It will be disable if datasets are < 5,000 cells. Parallel mode uses a subsampling approach to reduce runtime. Default is FALSE

mcores

A integer. Indicating the number of cores to use when parallelMode = TRUE

subsamplesize

A integer. Indicating the number of cells to subsample when parallelMode = TRUE

Value

A list incorporates the input list and CCAT velues or CCAT values itself, depending on the input object(s):

CCAT The estimated signaling entropy rate using Pearson correlation coefficient

References

Chen, Weiyan, et al. Single-cell landscape in mammary epithelium reveals bipotent-like cells associated with breast cancer risk and outcome. Communications Biology 2 (2019): 306. doi: 10.1038/s42003-019-0554-8.

Teschendorff Andrew E., Tariq Enver. Single-cell entropy for accurate estimation of differentiation potency from a cell’s transcriptome. Nature communications 8 (2017): 15599. doi: 10.1038/ncomms15599.

Teschendorff Andrew E., Banerji CR, Severini S, Kuehn R, Sollich P. Increased signaling entropy in cancer requires the scale-free property of protein interaction networks. Scientific reports 5 (2015): 9646. doi: 10.1038/srep09646.

Banerji, Christopher RS, et al. Intra-tumour signalling entropy determines clinical outcome in breast and lung cancer. PLoS computational biology 11.3 (2015): e1004115. doi: 10.1371/journal.pcbi.1004115.

Teschendorff, Andrew E., Peter Sollich, and Reimer Kuehn. Signalling entropy: A novel network-theoretical framework for systems analysis and interpretation of functional omic data. Methods 67.3 (2014): 282-293. doi: 10.1016/j.ymeth.2014.03.013.

Banerji, Christopher RS, et al. Cellular network entropy as the energy potential in Waddington's differentiation landscape. Scientific reports 3 (2013): 3039. doi: 10.1038/srep03039.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
### load example data & network matrix
data(Example.m)
data(net13Jun12.m)

### integrate expr matrix and PPI network
Integration.l <- DoIntegPPI(exp.m = Example.m, ppiA.m = net13Jun12.m)

### estimate SR with PCC
### get it with the integration list
Integration.l <- CCAT(Integration.l)

### or get CCAT directly from data matrix
CCAT.v <- CCAT(data.m = Example.m, ppiA.m = net13Jun12.m)

ChenWeiyan/LandSCENT documentation built on Aug. 28, 2020, 9:55 p.m.