#' @title Differential circRNA expression analysis adapted from EdgeR
#'
#' @description The helper functions edgerRes() identifies
#' differentially expressed circRNAs. The latter uses respectively the R
#' Bioconductor packages EdgeR which implements a beta-binomial model to model
#' changes in circRNA expression. The info reported in experiment.txt file
#' are needed for differential expression analysis.
#'
#' @param backSplicedJunctions A data frame containing the back-spliced junction
#' coordinates and counts in each analyzed sample.
#' See \code{\link{getBackSplicedJunctions}} and \code{\link{mergeBSJunctions}}
#' (to group circRNA detected by multiple detection tools) on how to generated
#' this data frame.
#'
#' @param condition A string specifying which conditions to compare. Only 2
#' conditions at the time can be analyzed. Separate the 2 conditions with a
#' dash, e.g. A-B. Use the same name used in column condition in experiment.txt.
#' log2FC calculation is perfomed by comparing the condition positioned
#' forward against the condition positioned backward in the alphabet.
#' E.g. if there are 2 conditions A and B then a negative log2FC means that
#' in condition B there is a downregulation of the corresponding circRNA.
#' If a positive log2FC is found means that there is an upregulation in
#' condition B of that circRNA.
#'
#' @param pAdjustMethod A character string stating the method used to adjust
#' p-values for multiple testing. See \code{\link[stats]{p.adjust}}.
#' Deafult value is "BH".
#'
#' @param normMethod A character string specifying the normalization method to
#' be used. It can be "TMM","RLE","upperquartile" or"none". The value given
#' to the method argument is given to the \code{\link[edgeR]{calcNormFactors}}
#' used internally. Deafult value is "TMM".
#'
#' @param pathToExperiment A string containing the path to the experiment.txt
#' file. The file experiment.txt contains the experiment design information.
#' It must have at least 3 columns with headers:
#' \describe{
#' \item{label:}{(1st column) - unique names of the samples (short but informative).}
#' \item{fileName:}{(2nd column) - name of the input files - e.g. circRNAs_X.txt, where
#' x can be can be 001, 002 etc.}
#' \item{group:}{ (3rd column) - biological conditions - e.g. A or B; healthy or diseased
#' if you have only 2 conditions.}
#' }
#'
#' By default pathToExperiment is set to NULL and the file it is searched in
#' the working directory. If experiment.txt is located in a different directory
#' then the path needs to be specified.
#'
#' @return A data frame.
#'
#' @examples
#' # Load a data frame containing detected back-spliced junctions
#' data("mergedBSJunctions")
#'
#' pathToExperiment <- system.file("extdata", "experiment.txt",
#' package ="circRNAprofiler")
#'
#' # Filter circRNAs
#' filteredCirc <- filterCirc(
#' mergedBSJunctions,
#' allSamples = FALSE,
#' min = 5,
#' pathToExperiment)
#'
#' # Find differentially expressed circRNAs
#' deseqResBvsA <- getEdgerRes(
#' filteredCirc,
#' condition = "A-B",
#' normMethod = "TMM",
#' pAdjustMethod = "BH",
#' pathToExperiment)
#'
#'
#' @import dplyr
#' @import edgeR
#' @importFrom utils read.table
#' @importFrom rlang .data
#' @export
getEdgerRes <-
function(backSplicedJunctions,
condition,
normMethod = "TMM",
pAdjustMethod = "BH",
pathToExperiment = NULL) {
# Read experiment.txt
experiment <- .readExperiment(pathToExperiment)
if (nrow(experiment)) {
# Read from path given in input
match.arg(normMethod, c("TMM", "RLE", "upperquartile", "none"))
cond <- strsplit(condition, "-")[[1]]
experiment <-
experiment[experiment$condition %in% cond,]
# Creates a DGEList object
dge <-
edgeR::DGEList(counts = backSplicedJunctions[, experiment$label],
group = experiment$condition)
# Calculate normalization factors to scale the raw library sizes
dge <-
edgeR::calcNormFactors(dge, method = normMethod, na.rm = TRUE)
# Estimate common dispersion
dge <- edgeR::estimateCommonDisp(dge)
# Estimates tagwise dispersion
dge <- edgeR::estimateTagwiseDisp(dge)
# Compute genewise exact tests
statistics <-
edgeR::topTags(
exactTest(dge),
n = nrow(dge$counts),
adjust.method = pAdjustMethod,
sort.by = "none"
)
# Get edgerRes data frame
edgerRes <- .getEdgerResDF(backSplicedJunctions,
statistics, dge)
} else{
edgerRes <- data.frame()
cat("experiment.txt not found in wd (or empty). Differential expression analysis can
not be run. Type ?getEdgerRes and see pathToExperiment param.\n")
}
return(edgerRes)
}
# Get edgerRes data frame
.getEdgerResDF <- function(backSplicedJunctions,
statistics, dge) {
edgerRes <-
dplyr::bind_cols(
data.frame(
backSplicedJunctions$id,
backSplicedJunctions$gene,
statistics$table,
dge$pseudo.counts
)
) %>%
dplyr::select(-.data$logCPM) %>%
dplyr::rename(
log2FC = .data$logFC,
pvalue = .data$PValue,
padj = .data$FDR,
gene = .data$backSplicedJunctions.gene,
id = .data$backSplicedJunctions.id
) %>%
dplyr::mutate(id = as.character(.data$id),
gene = as.character(.data$gene))
return(edgerRes)
}
# If the function you are looking for is not here check supportFunction.R
# Functions in supportFunction.R are used by multiple functions.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.