Nothing
plot_heatmap = function(.data,
.horizontal,
.vertical,
.abundance,
annotation = NULL,
type = rep("tile", length(quo_names(annotation))),
transform = NULL,
.scale = "row",
palette_value = c("#440154FF", "#21908CFF", "#fefada" ), #c(viridis(3)[1:2],"#fefada")
palette_discrete = list(),
palette_continuous = list(),
...) {
# Comply with CRAN NOTES
. = NULL
col_name = NULL
orientation = NULL
# Make col names
.horizontal = enquo(.horizontal)
.vertical = enquo(.vertical)
.abundance = enquo(.abundance)
annotation = enquo(annotation)
# Check if palette discrete and continuous are lists
if(!is.list(palette_discrete) | !is.list(palette_continuous))
stop("tidyHeatmap says: the arguments palette_discrete and palette_continuous must be lists. E.g., list(rep(\"#000000\", 20))")
# Get abundance matrix
abundance_tbl =
.data %>%
ungroup() %>%
# Check if transform is needed
when(
is_function(transform) ~
mutate(., !!.abundance := !!.abundance %>% transform()) %>%
# Check if log introduced -Inf
when(
# NAN produced
filter(., !!.abundance %>% is.nan) %>% nrow %>% gt(0) ~ stop("tidyHeatmap says: you applied a transformation that introduced NaN."),
# -Inf produced
pull(., !!.abundance) %>% min %>% equals(-Inf) ~ stop("tidyHeatmap says: you applied a transformation that introduced negative infinite .value, was it log? If so please use log1p."),
~(.)
),
~ (.)
) %>%
# If .scale row
when(
.scale %in% c("row", "both") ~ (.) %>%
nest(data = -!!.vertical) %>%
mutate(data = map(data, ~ .x %>% mutate(!!.abundance := !!.abundance %>% scale_robust()))) %>%
unnest(data),
~ (.)
) %>%
# If .scale column
when(
.scale %in% c("column", "both") ~ (.) %>%
nest(data = -!!.horizontal) %>%
mutate(data = map(data, ~ .x %>% mutate(!!.abundance := !!.abundance %>% scale_robust()))) %>%
unnest(data),
~ (.)
) %>%
distinct(!!.vertical,!!.horizontal,!!.abundance) %>%
spread(!!.horizontal,!!.abundance)
abundance_mat =
abundance_tbl %>%
as_matrix(rownames = quo_name(.vertical))
# Colors tiles
# If palette_value is a function pass it directly, otherwise check if the character array is of length 3
colors =
palette_value %>%
ifelse2_pipe(
palette_value %>% class() %>% equals("function"),
length(palette_value) != 3,
~ .x,
~ stop("tidyHeatmap says: If palette_value is a vector of hexadecimal colous, it should have 3 values. If you want more customisation, you can pass to palette_value a function, that is derived as for example \"colorRamp2(c(-2, 0, 2), palette_value)\"" ),
~ colorRamp2(
# min and max and intermediates based on length of the palette
seq(from=min(abundance_mat), to=max(abundance_mat), length.out = length(palette_value)),
palette_value
)
)
# Colors annotations
palette_annotation = list(
# Discrete pellets
discrete =
palette_discrete %>%
c( list(
brewer.pal(9, "Set1"),
brewer.pal(8, "Set2"),
brewer.pal(12, "Set3"),
brewer.pal(8, "Dark2"),
brewer.pal(8, "Accent"),
brewer.pal(8, "Pastel2")
)),
continuous =
palette_continuous %>%
c(list(
brewer.pal(11, "Spectral") %>% rev,
viridis(n = 5),
magma(n = 5),
brewer.pal(11, "PRGn"),
brewer.pal(11, "BrBG")
))
)
# Check if there are nested column in the data frame
if(.data %>% lapply(class) %>% equals("list") %>% any)
warning("tidyHeatmap says: nested/list column are present in your data frame and have been dropped as their unicity cannot be identified by dplyr.")
# Data frame of row and column columns
x_y_annot_cols =
.data %>%
get_x_y_annotation_columns(!!.horizontal,!!.vertical,!!.abundance)
# Check if annotation is compatible with your dataset
quo_names(annotation) %>%
setdiff(x_y_annot_cols %>% pull(col_name)) %>%
when( quo_names(annotation) != "NULL" & length(.) > 0 ~
stop(
sprintf(
"tidyHeatmap says: Your annotation \"%s\" is not unique to vertical nor horizontal dimentions",
(.) %>% paste(collapse = ", ")
)
))
# See if I have grouping and setup framework
group_annotation = get_group_annotation_OLD(
.data,
!!.horizontal,
!!.vertical,
!!.abundance,
!!annotation,
x_y_annot_cols,
palette_annotation
)
# If I have grouping, eliminate the first discrete palette
palette_annotation$discrete =
palette_annotation$discrete %>%
ifelse_pipe(length(get_grouping_columns_OLD(.data)) > 0, ~ tail(.x, -length(get_grouping_columns_OLD(.data))))
# Get annotation
.data_annot =
.data %>%
get_top_left_annotation_OLD( !!.horizontal,
!!.vertical,
!!.abundance,
!!annotation, palette_annotation, type, x_y_annot_cols)
# # Check if annotation is compatible with your dataset
# x_y_annot_cols %>%
# inner_join(.data_annot %>% distinct(col_name), by="col_name") %>%
# count(col_name) %>%
# filter(n > 1) %>%
# pull(col_name) %>%
# when( length(.) > 0 ~
# stop(
# sprintf(
# "tidyHeatmap says: Your annotation \"%s\" is unique to vertical and horizontal dimentions",
# (.) %>% paste(collapse = ", ")
# )
# ))
# Isolate top annotation
top_annot =
c(
group_annotation$top_annotation,
.data_annot %>%
filter(orientation == "column") %>%
annot_to_list_OLD()
) %>%
list_drop_null() %>%
ifelse_pipe(
(.) %>% length %>% gt(0) && !is.null((.)), # is.null needed for check Windows CRAN servers
~ do.call("columnAnnotation", .x ),
~ NULL
)
# Isolate left annotation
left_annot =
c(group_annotation$left_annotation, .data_annot %>%
filter(orientation == "row") %>%
annot_to_list_OLD()) %>%
list_drop_null() %>%
ifelse_pipe(
(.) %>% length %>% gt(0) && !is.null((.)), # is.null needed for check Windows CRAN servers
~ do.call("rowAnnotation", .x),
~ NULL
)
abundance_mat %>%
Heatmap(
name = quo_name(.abundance),
column_title = quo_name(.horizontal),
row_title = quo_name(.vertical),
col = colors,
row_split = group_annotation$row_split,
column_split = group_annotation$col_split,
left_annotation = left_annot,
top_annotation = top_annot,
cluster_row_slices = FALSE,
cluster_column_slices = FALSE,
row_names_gp = gpar(fontsize = min(12, 320 / dim(abundance_mat)[1])),
column_names_gp = gpar(fontsize = min(12, 320 / dim(abundance_mat)[2])),
#,
# clustering_distance_columns = robust_dist,
# ,
#
# inflection = anno_points( << THIS CAN ALSO BE AUTOMATIC GIVING COLUMN DISTINCT WITH .vertical AND TYPE anno_POINTS
# tbl %>% distinct(symbol_ct, inflection) %>%
# arrange(symbol_ct) %>% pull(inflection)
# )
...
)
}
get_top_left_annotation_OLD = function(.data_, .column, .row, .abundance, annotation, palette_annotation, type, x_y_annot_cols){
# Comply with CRAN NOTES
data = NULL
fx = NULL
annot = NULL
annot_type = NULL
idx = NULL
value = NULL
orientation = NULL
col_name = NULL
col_orientation = NULL
.column = enquo(.column)
.row = enquo(.row)
.abundance = enquo(.abundance)
annotation = enquo(annotation)
#type_to_annot_function = list("tile" = NULL, "point" = anno_points, "bar" = anno_barplot, "line" = anno_lines)
annotation_function = type_to_annot_function[type]
# Create dataset
quo_names(annotation) %>%
as_tibble %>%
rename(col_name = value) %>%
# delete if annotation is NULL
when(quo_is_null(annotation) ~ slice(., 0), ~ (.)) %>%
# Add orientation
left_join(x_y_annot_cols, by = "col_name") %>%
mutate(col_orientation = map_chr(orientation, ~ .x %>% when((.) == "column" ~ quo_name(.column), (.) == "row" ~ quo_name(.row)))) %>%
# Add data
mutate(
data = map2(
col_name,
col_orientation,
~
.data_ %>%
ungroup() %>%
select(.y, .x) %>%
distinct() %>%
arrange_at(vars(.y)) %>%
pull(.x)
)
) %>%
# Add function
mutate(fx = annotation_function) %>%
# Apply annot function if not NULL otherwise pass original annotation
# This because no function for ComplexHeatmap = to tile
mutate(annot = pmap(list(data, fx, orientation), ~ {
# Trick needed for map BUG: could not find function "..2"
fx = ..2
# Do conditional
if(is_function(fx)) fx(..1, which=..3)
else .x
})) %>%
# # Check if NA in annotations
# mutate_at(vars(!!annotation), function(x) {
# if(any(is.na(x))) { warning("tidyHeatmap says: You have NAs into your annotation column"); replace_na(x, "NA"); }
# else { x }
# } ) %>%
# Add color indexes separately for each orientation
mutate(annot_type = map_chr(annot, ~ .x %>% when(class(.) %in% c("factor", "character", "logical") ~ "discrete",
class(.) %in% c("integer", "numerical", "numeric", "double") ~ "continuous",
~ "other"
) )) %>%
group_by(annot_type) %>%
mutate(idx = row_number()) %>%
ungroup() %>%
mutate(color = map2(annot, idx, ~ {
if(.x %>% class %in% c("factor", "character", "logical"))
colorRampPalette(palette_annotation$discrete[[.y]])(length(unique(.x))) %>% setNames(unique(.x))
else if (.x %>% class %in% c("integer", "numerical", "numeric", "double"))
colorRampPalette(palette_annotation$continuous[[.y]])(length(.x)) %>% colorRamp2(seq(min(.x), max(.x), length.out = length(.x)), .)
else NULL
})) %>%
# Stop if annotations discrete bigger than palette
when(
(.) %>% pull(data) %>% map_chr(~ .x %>% class) %in%
c("factor", "character") %>% which %>% length %>%
gt(palette_annotation$discrete %>% length) ~
stop("tidyHeatmap says: Your discrete annotaton columns are bigger than the palette available"),
~ (.)
) %>%
# Stop if annotations continuous bigger than palette
when(
(.) %>% pull(data) %>% map_chr(~ .x %>% class) %in%
c("int", "dbl", "numeric") %>% which %>% length %>%
gt( palette_annotation$continuous %>% length) ~
stop("tidyHeatmap says: Your continuous annotaton columns are bigger than the palette available"),
~ (.)
)
}
get_group_annotation_OLD = function(.data, .column, .row, .abundance, annotation, x_y_annot_cols, palette_annotation){
# Comply with CRAN NOTES
data = NULL
. = NULL
orientation = NULL
# Make col names
.column = enquo(.column)
.row = enquo(.row)
.abundance = enquo(.abundance)
annotation = enquo(annotation)
# Setup default NULL
top_annotation = NULL
left_annotation = NULL
row_split = NULL
col_split = NULL
# Column groups
col_group = get_grouping_columns_OLD(.data)
if("groups" %in% (.data %>% attributes %>% names)) {
x_y_annotation_cols =
x_y_annot_cols %>%
nest(data = -orientation) %>%
mutate(data = map(data, ~ .x %>% pull(1))) %>%
{
df = (.)
pull(df, data) %>% setNames(pull(df, orientation))
} %>%
map(
~ .x %>% intersect(col_group)
)
# Check if you have more than one grouping, at the moment just one is accepted
if(x_y_annotation_cols %>% lapply(length) %>% unlist %>% max %>% gt(1))
stop("tidyHeatmap says: At the moment just one grouping per dimension (max 1 row and 1 column) is supported.")
if(length(x_y_annotation_cols$row) > 0){
# Row split
row_split =
.data %>%
ungroup() %>%
distinct(!!.row, !!as.symbol(x_y_annotation_cols$row)) %>%
arrange(!!.row) %>%
pull(!!as.symbol(x_y_annotation_cols$row))
# Create array of colors
palette_fill_row = palette_annotation$discrete[[1]][1:length(unique(row_split))] %>% setNames(unique(row_split))
left_annotation_args =
list(
ct = anno_block(
gp = gpar(fill = palette_fill_row ),
labels = row_split %>% unique %>% sort,
labels_gp = gpar(col = "white"),
which = "row"
)
)
left_annotation = as.list(left_annotation_args)
# Eliminate palette
palette_annotation$discrete = palette_annotation$discrete[-1]
}
if(length(x_y_annotation_cols$column) > 0){
# Col split
col_split =
.data %>%
ungroup() %>%
distinct(!!.column, !!as.symbol(x_y_annotation_cols$column)) %>%
arrange(!!.column) %>%
pull(!!as.symbol(x_y_annotation_cols$column))
# Create array of colors
palette_fill_column = palette_annotation$discrete[[1]][1:length(unique(col_split))] %>% setNames(unique(col_split))
top_annotation_args =
list(
ct = anno_block(
gp = gpar(fill = palette_fill_column ),
labels = col_split %>% unique %>% sort,
labels_gp = gpar(col = "white"),
which = "column"
)
)
top_annotation = as.list(top_annotation_args)
}
}
# Return
list( left_annotation = left_annotation, row_split = row_split, top_annotation = top_annotation, col_split = col_split )
}
get_grouping_columns_OLD = function(.data){
# Comply with CRAN NOTES
.rows = NULL
if("groups" %in% (.data %>% attributes %>% names))
.data %>% attr("groups") %>% select(-.rows) %>% colnames()
else c()
}
annot_to_list_OLD = function(.data){
# Comply with CRAN NOTES
col_name = NULL
annot = NULL
.data %>% pull(annot) %>% setNames(.data %>% pull(col_name)) %>%
# If list is populated
when(length(.) > 0 ~ (.) %>% c(
col = list(.data %>%
filter(map_lgl(color, ~ .x %>% is.null %>% `!`)) %>%
{ setNames( pull(., color), pull(., col_name)) })
), ~ (.))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.