Nothing
#' Neighbor-Joining
#'
#' This function performs the neighbor-joining tree estimation of Saitou and
#' Nei (1987). UNJ is the unweighted version from Gascuel (1997).
#'
#'
#' @param x A distance matrix.
#' @return an object of class \code{"phylo"}.
#' @author Klaus P. Schliep \email{klaus.schliep@@gmail.com}
#' @seealso \code{\link[ape]{nj}}, \code{\link[ape]{dist.dna}},
#' \code{\link[phangorn]{dist.hamming}}, \code{\link[phangorn]{upgma}},
#' \code{\link[ape]{fastme}}
#' @references Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new
#' method for reconstructing phylogenetic trees. \emph{Molecular Biology and
#' Evolution}, \bold{4}, 406--425.
#'
#' Studier, J. A and Keppler, K. J. (1988) A Note on the Neighbor-Joining
#' Algorithm of Saitou and Nei. \emph{Molecular Biology and Evolution},
#' \bold{6}, 729--731.
#'
#' Gascuel, O. (1997) Concerning the NJ algorithm and its unweighted version,
#' UNJ. in Birkin et. al. \emph{Mathematical Hierarchies and Biology},
#' 149--170.
#' @keywords cluster
#' @examples
#'
#' data(Laurasiatherian)
#' dm <- dist.ml(Laurasiatherian)
#' tree <- NJ(dm)
#' plot(tree)
#'
#' @rdname NJ
#' @export
NJ <- function(x) reorder(nj(x), "postorder")
#' @rdname NJ
#' @export
UNJ <- function(x){
x <- as.matrix(x)
labels <- attr(x, "Labels")[[1]]
edge.length <- NULL
edge <- NULL
d <- as.matrix(x)
if (is.null(labels))
labels <- colnames(d)
l <- dim(d)[1]
n <- l
nam <- as.character(1:l)
m <- l - 2
nam <- 1:l
k <- 2 * l - 2
w <- rep(1, l)
while (l > 2) {
r <- rowSums(d) / (l - 2)
# i <- 0
# j <- 0
tmp <- out_cpp(d, r, l)
e2 <- tmp[2]
e1 <- tmp[1]
l1 <- d[e1, e2] / 2 + sum( (d[e1, -c(e1, e2)] - d[e2, -c(e1, e2)]) *
w[-c(e1, e2)]) / (2 * (n - w[e1] - w[e2]))
l2 <- d[e1, e2] / 2 + sum( (d[e2, -c(e1, e2)] - d[e1, -c(e1, e2)]) *
w[-c(e1, e2)]) / (2 * (n - w[e1] - w[e2]))
edge.length <- c(l1, l2, edge.length)
edge <- rbind(c(k, nam[e2]), edge)
edge <- rbind(c(k, nam[e1]), edge)
nam <- c(nam[c(-e1, -e2)], k)
dnew <- (w[e1] * d[e1, ] + w[e2] * d[e2, ] - w[e1] * l1 - w[e2] * l2) /
(w[e1] + w[e2])
d <- cbind(d, dnew)
d <- rbind(d, c(dnew, 0))
d <- d[-c(e1, e2), -c(e1, e2)]
w <- c(w, w[e1] + w[e2])
w <- w[-c(e1, e2)]
k <- k - 1
l <- l - 1
}
edge.length <- c(d[2, 1], edge.length)
result <- list(edge = rbind(c(nam[2], nam[1]), edge),
edge.length = edge.length, tip.label = labels, Nnode = m)
class(result) <- "phylo"
reorder(result, "postorder")
}
#
# Distance Matrix methods
#
#' Compute a design matrix or non-negative LS
#'
#' \code{nnls.tree} estimates the branch length using non-negative least
#' squares given a tree and a distance matrix. \code{designTree} and
#' \code{designSplits} compute design matrices for the estimation of edge
#' length of (phylogenetic) trees using linear models. For larger trees a
#' sparse design matrix can save a lot of memory. %\code{designTree} also
#' computes a contrast matrix if the method is "rooted".
#'
#' @param tree an object of class \code{phylo}
#' @param sparse return a sparse design matrix.
#' @param x number of taxa.
#' @param splits one of "all", "star".
#' @param dm a distance matrix.
#' @param method compute an "unrooted", "ultrametric" or "tipdated" tree.
#' @param rooted compute a "ultrametric" or "unrooted" tree (better use method).
#' @param trace defines how much information is printed during optimization.
#' @param \dots further arguments, passed to other methods.
#' @param weight vector of weights to be used in the fitting process.
#' Weighted least squares is used with weights w, i.e., sum(w * e^2) is
#' minimized.
#' @param balanced use weights as in balanced fastME
#' @param tip.dates a named vector of sampling times associated to the tips of
#' the tree.
#' @param calibration a named vector of calibration times associated to nodes of
#' the tree.
#' @param eps minimum edge length (default s 1e-8).
## @param strict strict calibration.
#' @return \code{nnls.tree} return a tree, i.e. an object of class
#' \code{phylo}. \code{designTree} and \code{designSplits} a matrix, possibly
#' sparse.
#' @author Klaus Schliep \email{klaus.schliep@@gmail.com}
#' @seealso \code{\link[ape]{fastme}}, \code{\link[ape]{rtt}},
#' \code{\link[phangorn]{distanceHadamard}},
#' \code{\link[phangorn]{splitsNetwork}}, \code{\link[phangorn]{upgma}}
#' @keywords cluster
#' @importFrom Matrix Matrix sparseMatrix crossprod solve
#' @importFrom quadprog solve.QP.compact
#' @examples
#'
#' example(NJ)
#' dm <- as.matrix(dm)
#' y <- dm[lower.tri(dm)]
#' X <- designTree(tree)
#' lm(y~X-1)
#' # avoids negative edge weights
#' tree2 <- nnls.tree(dm, tree)
#'
#' @rdname designTree
#' @export
designTree <- function(tree, method = "unrooted", sparse = FALSE,
tip.dates=NULL, calibration=NULL, ...) { # , strict=TRUE
method <- match.arg(method,
c("unrooted", "ultrametric", "rooted", "tipdated"))
if(method == "rooted") method <- "ultrametric"
if(has.singles(tree)) tree <- collapse.singles(tree)
#if (!is.na(pmatch(method, "all")))
# method <- "unrooted"
#METHOD <- c("unrooted", "rooted", "tipdated")
#method <- pmatch(method, METHOD)
#if (is.na(method)) stop("invalid method")
#if (method == -1) stop("ambiguous method")
#if (!is.rooted(tree) & method == 2) stop("tree has to be rooted")
if(method == "unrooted") X <- designUnrooted(tree, sparse = sparse, ...)
if(method == "ultrametric") X <- designUltra(tree, sparse = sparse, ...)
if(method == "tipdated") X <- designTipDated(tree, tip.dates=tip.dates,
sparse=sparse, ...)
X
}
designUnrooted <- function(tree, sparse=FALSE, order = NULL) {
if (inherits(tree, "phylo")) {
if (is.rooted(tree)) tree <- unroot(tree)
tree <- reorder(tree, "postorder")
p <- as.matrix(as.splits(tree)[tree$edge[,2]])
# p <- bipartition(tree)
}
if (inherits(tree, "splits")) p <- as.matrix(tree)
if (!is.null(order))
p <- p[, order]
m <- dim(p)[2]
ind <- rowSums(p)
p <- p[ind != m, ]
n <- dim(p)[1]
res <- matrix(0, (m - 1) * m / 2, n)
k <- 1
for (i in 1:(m - 1)) {
for (j in (i + 1):m) {
res[k, ] <- p[, i] != p[, j]
k <- k + 1
}
}
if (inherits(tree, "phylo"))
colnames(res) <- paste(tree$edge[, 1], tree$edge[, 2], sep = "<->")
if(sparse) res <- Matrix(res, sparse=TRUE)
res
}
designUltra <- function(tree, sparse = TRUE, calibration=NULL) {
if (is.null(attr(tree, "order")) || attr(tree, "order") != "postorder")
tree <- reorder(tree, "postorder")
# stopifnot( !(!is.null(calibration) && is.null(tree$node.label)))
leri <- allChildren(tree)
bp <- bip(tree)
n <- length(tree$tip.label)
l <- tree$Nnode
nodes <- integer(l)
k <- 1L
u <- numeric(n * (n - 1) / 2)
v <- numeric(n * (n - 1) / 2)
m <- 1L
for (i in seq_along(leri)) {
if (length(leri[[i]]) > 1) {
if (length(leri[[i]]) == 2) ind <- getIndex(bp[[leri[[i]][1] ]],
bp[[leri[[i]][2] ]], n)
else {
ind <- NULL
le <- leri[[i]]
nl <- length(le)
for (j in 1:(nl - 1)) ind <- c(ind, getIndex(bp[[le[j] ]],
unlist(bp[ le[(j + 1):nl] ]), n))
}
li <- length(ind)
v[m:(m + li - 1)] <- k
u[m:(m + li - 1)] <- ind
nodes[k] <- i
m <- m + li
k <- k + 1L
}
}
if (sparse) X <- sparseMatrix(i = u, j = v, x = 2L)
else {
X <- matrix(0L, n * (n - 1) / 2, l)
X[cbind(u, v)] <- 2L
}
colnames(X) <- nodes
attr(X, "nodes") <- nodes
X
}
designUnrooted2 <- function(tree, sparse = TRUE) {
if (is.null(attr(tree, "order")) || attr(tree, "order") != "postorder")
tree <- reorder(tree, "postorder")
leri <- allChildren(tree)
bp <- bip(tree)
n <- length(tree$tip.label)
l <- tree$Nnode
nodes <- integer(l)
nTips <- as.integer(length(tree$tip.label))
k <- nTips
u <- numeric(n * (n - 1) / 2)
v <- numeric(n * (n - 1) / 2)
z <- numeric(n * (n - 1) / 2)
y <- numeric(n * (n - 1) / 2)
p <- 1L
m <- 1L
for (i in seq_along(leri)) {
if (length(leri[[i]]) > 1) {
if (length(leri[[i]]) == 2) {
ind <- getIndex(bp[[leri[[i]][1] ]], bp[[leri[[i]][2] ]], n)
ytmp <- rep(bp[[leri[[i]][1] ]], each = length(bp[[leri[[i]][2] ]]))
ztmp <- rep(bp[[leri[[i]][2] ]], length(bp[[leri[[i]][1] ]]))
}
else {
ind <- NULL
le <- leri[[i]]
nl <- length(le)
ytmp <- NULL
ztmp <- NULL
for (j in 1:(nl - 1)) {
bp1 <- bp[[le[j] ]]
bp2 <- unlist(bp[le[(j + 1):nl] ])
ind <- c(ind, getIndex(bp1, unlist(bp2), n))
ytmp <- c(ytmp, rep(bp1, each = length(bp2)))
ztmp <- c(ztmp, rep(bp2, length(bp1)))
}
}
li <- length(ind)
v[m:(m + li - 1)] <- k
u[m:(m + li - 1)] <- ind
y[m:(m + li - 1)] <- ytmp
z[m:(m + li - 1)] <- ztmp
nodes[p] <- i
m <- m + li
k <- k + 1L
p <- p + 1L
}
}
jj <- c(y, z) # [ind],v)
ii <- c(u, u) # [ind],u)
ind <- (jj < nTips)
jj <- c(jj[ind], v)
ii <- c(ii[ind], u)
l1 <- length(u)
l2 <- sum(ind)
x <- rep(c(-1L, 2L), c(l2, l1))
X <- sparseMatrix(i = ii, j = jj, x = x)
if (!sparse) {
X <- as.matrix(X)
}
nodes <- c(1:(nTips - 1L), nodes)
colnames(X) <- nodes
attr(X, "nodes") <- nodes
X
}
designTipDated <- function(tree, tip.dates, sparse=TRUE){
#, strict=TRUE
#if(!is.numeric(tip.dates)) browser()
#if(!length(tip.dates) >= Ntip(tree)) browser()
stopifnot(is.numeric(tip.dates), length(tip.dates) >= Ntip(tree))
nTip <- Ntip(tree)
tmp <- function(n){
x1 <- rep(seq_len(n), each=n)
x2 <- rep(seq_len(n), n)
ind <- x1 < x2
sparseMatrix(i = rep(seq_len(sum(ind)), 2), j = c(x1[ind], x2[ind]))
}
tip.dates <- tip.dates - max(tip.dates)
x <- tmp(nTip) %*% tip.dates
nodes <- integer(tree$Nnode)
X <- designUltra(tree, sparse=sparse)
nodes <- attr(X, "nodes")
X <- cbind(X, x)
colnames(X) <- c(nodes, -1)
attr(X, "nodes") <- nodes
X
}
designCalibrated <- function(tree, sparse=TRUE, calibration=NULL){
#, tip.dates=NULL, strict=TRUE
#stopifnot(is.numeric(tip.dates), length(tip.dates) >= Ntip(tree))
nTip <- Ntip(tree)
#if(!is.null(tree$node.label))
cname <- tree$node.label
# nodes <- integer(tree$Nnode)
X <- designUltra(tree, sparse=sparse)
#if(!is.null(tree$node.label))
colnames(X) <- cname
x <- X[, names(calibration), drop=FALSE] %*% calibration
X <- cbind(X[,-match(names(calibration), cname)], rate=x)
# nodes <- attr(X, "nodes")
# X <- cbind(X, x)
# colnames(X) <- c(nodes, -1)
# attr(X, "nodes") <- nodes
X
}
designConstrained <- function(tree, sparse=TRUE, tip.dates=NULL,
calibration=NULL){
stopifnot(is.numeric(tip.dates), length(tip.dates) >= Ntip(tree))
X <- designUltra(tree, sparse=sparse)
nTip <- Ntip(tree)
# designTipDated
if(!is.null(tip.dates)){
tmp <- function(n){
x1 <- rep(seq_len(n), each=n)
x2 <- rep(seq_len(n), n)
ind <- x1 < x2
sparseMatrix(i = rep(seq_len(sum(ind)), 2), j = c(x1[ind], x2[ind]))
}
}
if(!is.null(calibration)){
cname <- tree$node.label
colnames(X) <- cname
x <- X[, names(calibration), drop=FALSE] %*% calibration
X <- cbind(X[,-match(names(calibration), cname)], rate=x)
}
}
#' @rdname designTree
#' @export
nnls.tree <- function(dm, tree, method=c("unrooted", "ultrametric", "tipdated"),
rooted=NULL, trace=1, weight=NULL, balanced=FALSE, tip.dates=NULL) {
method <- match.arg(method, c("unrooted", "ultrametric", "tipdated"))
if(has.singles(tree)) tree <- collapse.singles(tree)
if (is.rooted(tree) && method == "unrooted") tree <- unroot(tree)
tree <- reorder(tree, "postorder")
if (balanced) {
if (!is.binary(tree)) stop("tree must be binary")
weight <- rowSums(designTree(unroot(tree)))
}
dm <- as.matrix(dm)
k <- dim(dm)[1]
labels <- tree$tip.label
dm <- dm[labels, labels]
y <- dm[lower.tri(dm)]
# computing the design matrix from the tree
if(!is.null(rooted)){
if(isTRUE(rooted)) method <- "ultrametric"
if(isFALSE(rooted)) method <- "unrooted"
}
X <- switch(method,
unrooted=designUnrooted2(tree),
ultrametric=designUltra(tree),
tipdated=designTipDated(tree, tip.dates))
# if (rooted) X <- designUltra(tree)
# else X <- designUnrooted2(tree)
if (!is.null(weight)) {
y <- y * sqrt(weight)
X <- X * sqrt(weight)
}
lab <- attr(X, "nodes")
ll <- length(lab) + 1L
# na.action
if (any(is.na(y))) {
ind <- which(is.na(y))
X <- X[-ind, , drop = FALSE]
y <- y[-ind]
}
# LS solution
Dmat <- crossprod(X) # cross-product computations
dvec <- crossprod(X, y)
betahat <- as.vector(solve(Dmat, dvec))
betahattmp <- betahat
bhat <- numeric(max(tree$edge))
if(method=="tipdated"){
nh <- max(tip.dates) - tip.dates
rate <- betahat[ll]
bhat[seq_len(Ntip(tree))] <- nh * rate
bhat[as.integer(lab)] <- betahat[-ll] # * (1/rate) [-ll]
}
else bhat[as.integer(lab)] <- betahat
betahat <- bhat[tree$edge[, 1]] - bhat[tree$edge[, 2]]
if (!any(betahat < 0)) {
RSS <- sum((y - (X %*% betahattmp))^2)
if (trace > 1) print(paste("RSS:", RSS))
attr(tree, "RSS") <- RSS
if(method=="tipdated"){
betahat <- betahat / rate
attr(tree, "rate") <- rate
}
tree$edge.length <- betahat
return(tree)
}
# non-negative LS
n <- dim(X)[2]
l <- nrow(tree$edge)
lab <- attr(X, "nodes")
# vielleicht solve.QP.compact
ind1 <- match(tree$edge[, 1], lab)
ind2 <- match(tree$edge[, 2], lab)
Amat <- matrix(0, 2, l)
Amat[1, ] <- 1
Amat[2, ] <- -1
Aind <- matrix(0L, 3, l)
Aind[1, ] <- 2L
Aind[2, ] <- as.integer(ind1)
Aind[3, ] <- as.integer(ind2)
if(method == "tipdated"){
ind3 <- match(seq_len(Ntip(tree)), tree$edge[,2])
Amat[2, ind3] <- -nh ## testen
Aind[3, ind3] <- length(lab) + 1L
}
if (any(is.na(Aind))) {
na_ind <- which(is.na(Aind), arr.ind = TRUE)
Aind[is.na(Aind)] <- 0L
for (i in seq_len(nrow(na_ind)) ){
Aind[1, na_ind[i, 2]] <- Aind[1, na_ind[i, 2]] - 1L
}
}
betahat <- quadprog::solve.QP.compact(as.matrix(Dmat), as.vector(dvec), Amat,
Aind)$sol
# quadratic programing solving
RSS <- sum((y - (X %*% betahat))^2)
if (trace > 1) print(paste("RSS:", RSS))
attr(tree, "RSS") <- RSS
bhat <- numeric(max(tree$edge))
if(method=="tipdated"){
rate <- betahat[ll]
bhat[seq_len(Ntip(tree))] <- nh * rate
bhat[as.integer(lab)] <- betahat[-ll]
}
else bhat[as.integer(lab)] <- betahat
betahat <- bhat[tree$edge[, 1]] - bhat[tree$edge[, 2]]
if(method=="tipdated") {
betahat <- betahat / rate
attr(tree, "rate") <- rate
}
tree$edge.length <- betahat
tree
}
#' @rdname designTree
#' @export
nnls.phylo <- function(x, dm, method = "unrooted", trace = 0, ...) {
nnls.tree(dm, x, method, trace = trace, ...)
}
#' @rdname designTree
#' @export
nnls.splits <- function(x, dm, trace = 0, eps = 1e-8) {
labels <- attr(x, "labels")
dm <- as.matrix(dm)
k <- dim(dm)[1]
dm <- dm[labels, labels]
y <- dm[lower.tri(dm)]
x <- SHORTwise(x) #, k) # use ape version
l <- lengths(x)
if (any(l == 0)) x <- x[-which(l == 0)]
X <- splits2design(x)
if (any(is.na(y))) {
ind <- which(is.na(y))
X <- X[-ind, , drop = FALSE]
y <- y[-ind]
}
Dmat <- crossprod(X) # cross-product computations
dvec <- crossprod(X, y)
betahat <- as.vector(solve(Dmat, dvec))
# if (!any(betahat < 0)) {
# RSS <- sum((y - (X %*% betahat))^2)
# if (trace > 1) print(paste("RSS:", RSS))
# attr(x, "RSS") <- RSS
# attr(x, "weights") <- betahat
# return(x)
# }
int <- lengths(x)
if (any(betahat < 0)) {
n <- dim(X)[2]
# quadratic programing
Amat <- matrix(1, 1, n)
Aind <- matrix(0L, 2L, n)
Aind[1, ] <- 1L
Aind[2, ] <- as.integer(1L:n)
betahat <- quadprog::solve.QP.compact(as.matrix(Dmat), as.vector(dvec),
Amat, Aind)$sol
}
RSS <- sum((y - (X %*% betahat))^2)
ind <- (betahat > 1e-8) | int == 1
x <- x[ind]
attr(x, "weights") <- betahat[ind]
if (trace > 1) print(paste("RSS:", RSS))
attr(x, "RSS") <- RSS
x
}
#' @rdname designTree
#' @export
nnls.networx <- function(x, dm, eps = 1e-8) {
# spl <- attr(x, "splits")
spl <- x$splits
spl2 <- nnls.splits(spl, dm, eps=eps)
weight <- attr(spl, "weight")
weight[] <- 0
weight[match(spl2, spl)] <- attr(spl2, "weight")
# attr(attr(x, "splits"), "weight") <- weight
attr(x$splits, "weight") <- weight
x$edge.length <- weight[x$splitIndex]
x
}
#' @rdname designTree
#' @export
designSplits <- function(x, splits = "all", ...)
{
if (!is.na(pmatch(splits, "all")))
splits <- "all"
if (inherits(x, "splits")) return(designUnrooted(x))
SPLITS <- c("all", "star") # ,"caterpillar")
splits <- pmatch(splits, SPLITS)
if (is.na(splits)) stop("invalid splits method")
if (splits == -1) stop("ambiguous splits method")
if (splits == 1) X <- designAll(x)
if (splits == 2) X <- designStar(x, ...)
return(X)
}
# add return splits=FALSE
designAll <- function(n, add.split = FALSE) {
Y <- matrix(0L, n * (n - 1) / 2, n)
k <- 1
for (i in 1:(n - 1)) {
for (j in (i + 1):n) {
Y[k, c(i, j)] <- 1L
k <- k + 1L
}
}
m <- n - 1L
X <- matrix(0L, m + 1, 2^m)
for (i in 1:m)
X[i, ] <- rep(rep(c(0L, 1L), each = 2^(i - 1)), 2^(m - i))
X <- X[, -1]
if (!add.split) return((Y %*% X) %% 2)
list(X = (Y %*% X) %% 2, Splits = t(X))
}
# faster sparse version
designStar <- function(n, sparse = TRUE) {
# res=NULL
# for(i in 1:(n-1)) res = rbind(res,cbind(matrix(0,(n-i),i-1),1,diag(n-i)))
res <- stree(n) |> as.splits() |> splits2design()
if (!sparse) return(as.matrix(res))
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.