kibior: KibioR, an Kibio and Elasticsearch data manipulation package.

Description Format Details Constructor Arguments Public fields Active bindings Methods Author(s) References See Also Examples

Description

KibioR is a lightweight package for data manipulation with Elasticsearch. Its main features allow easy data import, export, download, upload, searching and sharing to any Elasticsearch-based open architecture, scaling to billions of data and TB capability.

Kibior is a Kibio/Elasticsearch client written with R6 class. Instances of Kibior are object that allow to use Elasticsearch power and execute lots of predefined requests such as searching in massive amounts of data, joins between in-memory data and Elasticsearch indices, push and pull data to and from multiples Elasticsearch servers, and more. This little utilitary was built in the context of massive data invading biology and bioinformatics, but is completely versatile and can be applied to other fields. By adding it to R-scripts, it can perform several useful tasks such as: saving intermediary results, sharing them with a collaborator, automating import and upload of lots of files directly, and much more.

Format

R6Class object.

Details

A client to send, retrieve, search, join data in Elasticsearch.

Constructor Arguments

Argument Type Details Default
host character address or name of Elasticsearch server "localhost"
port numeric port of Elasticsearch server 9200
user character if required by the server, the username for authentication NULL
pwd character if required by the server, the password for authentication NULL
verbose logical verbose mode FALSE

created

Public fields

verbose

verbose mode, prints out more informations during execution

quiet_progress

progressbar quiet mode, toggles progress bar

quiet_results

results quiet mode, toggles results printing

Active bindings

host

Access and change the Elasticsearch host

port

Access and change the Elasticsearch port

endpoint

Access the Elasticsearch main endpoint

user

Access the Elasticsearch user.

pwd

Access the Elasticsearch password.

connection

Access the Elasticsearch connection object.

head_search_size

Access and change the head size default value.

cluster_name

Access the cluster name if and only if already connected.

cluster_status

Access the cluster status if and only if already connected.

nb_documents

Access the current cluster total number of documents if and only if already connected.

version

Access the Elasticsearch version if and only if already connected.

elastic_wait

Access and change the Elasticsearch wait time for update commands if and only if already connected.

valid_joins

Access the valid joins available in Kibior.

valid_count_types

Access the valid count types available (mainly observations = rows, variables = columns)

valid_elastic_metadata_types

Access the valid Elasticsearch metadata types available.

valid_push_modes

Access the valid push modes available.

shard_number

Access and modify the number of allocated primary shards when creating an Elasticsearch index.

shard_replicas_number

Access and modify the number of allocated replicas in an Elasticsearch index.

default_id_col

Access and modify the default ID column/field created when pushing data to Elasticsearch.

Methods

Public methods


Method new()

Usage
Kibior$new(
  host = "localhost",
  port = 9200,
  user = NULL,
  pwd = NULL,
  verbose = getOption("verbose")
)
Arguments
host

The target host to connect to Elasticsearch REST API (default: "localhost").

port

The target port (default: 9200).

user

If the server needs authentication, your username (default: NULL).

pwd

If the server needs authentication, your password (default: NULL).

verbose

The verbose mode (default: FALSE).

Details

Initialize a new object, automatically called when calling 'Kibior$new()'

Returns

a new instance/object of Kibior

Examples
\dontrun{
# default initiatlization, connect to "localhost:9200"
kc <- Kibior$new()
# connect to "192.168.2.145:9200"
kc <- Kibior$new("192.168.2.145")
# connect to "es:15005", verbose mode activated
kc <- Kibior$new(host = "elasticsearch", port = 15005, verbose = TRUE)
# connect to "192.168.2.145:9450" with credentials "foo:bar"
kc <- Kibior$new(host = "192.168.2.145", port = 9450, user = "foo", pwd = "bar")
# connect to "elasticsearch:9200"
kc <- Kibior$new("elasticsearch")

# get kibior var from env (".Renviron" file or local env) 
dd <- system.file("doc_env", "kibior_build.R", package = "kibior")
source(dd, local = TRUE)
kc <- .kibior_get_instance_from_env()
kc$quiet_progress <- TRUE

# preparing all examples (do not mind this for this method)
delete_if_exists <- function(index_names){
    tryCatch(
        expr = { kc$delete(index_names) },
        error = function(e){  }
    )
}
delete_if_exists(c(
    "aaa", 
    "bbb", 
    "ccc", 
    "ddd", 
    "sw", 
    "sw_naboo", 
    "sw_tatooine", 
    "sw_alderaan", 
    "sw_from_file", 
    "storms",
    "starwars"
))
}


Method print()

Usage
Kibior$print()
Details

Print simple informations of the current object.

Examples
\dontrun{
print(kc)
}



Method eq()

Usage
Kibior$eq(other = NULL)
Arguments
other

Another instance/object of Kibior (default: NULL).

Details

Tells if another instance of Kibior has the same 'host:port' couple.

Returns

TRUE if hosts and ports are identical, else FALSE

Examples
\dontrun{
kc$eq(kc)
}



Method ne()

Usage
Kibior$ne(other = NULL)
Arguments
other

Another instance/object of Kibior (default: NULL).

Details

Tells if another instance of Kibior has a different 'host:port' couple.

Returns

TRUE if hosts and ports are differents, else FALSE

Examples
\dontrun{
kc$ne(kc)
}


Method create()

Usage
Kibior$create(index_name, force = FALSE)
Arguments
index_name

a vector of index names to create (default: NULL).

force

Erase already existing identical index names? (default: FALSE).

Details

Create one or several indices in Elasticsearch.

Returns

a list containing results of creation per index

Examples
\dontrun{
kc$create("aaa")
kc$create(c("bbb", "ccc"))
}


Method list()

Usage
Kibior$list(get_specials = FALSE)
Arguments
get_specials

a boolean to get special indices (default: FALSE).

Details

List indices in Elasticsearch.

Returns

a list of index names, NULL if no index found

Examples
\dontrun{
kc$list()
kc$list(get_specials = TRUE)
}


Method has()

Usage
Kibior$has(index_name)
Arguments
index_name

a vector of index names to check.

Details

Does Elasticsearch has one or several indices?

Returns

a list with TRUE for found index, else FALSE

Examples
\dontrun{
kc$has("aaa")
kc$has(c("bbb", "ccc"))
}


Method delete()

Usage
Kibior$delete(index_name)
Arguments
index_name

a vector of index names to delete.

Details

Delete one or several indices in Elasticsearch.

Returns

a list containing results of deletion per index, or NULL if no index name match

Examples
\dontrun{
kc$delete("aaa")
kc$delete(c("bbb", "ccc"))
}


Method add_description()

Usage
Kibior$add_description(
  index_name,
  dataset_name,
  source_name,
  index_description,
  version,
  change_log,
  website,
  direct_download,
  version_date,
  license,
  contact,
  references,
  columns = list(),
  force = FALSE
)
Arguments
index_name

the index name to describe

dataset_name

the full length dataset name

source_name

the source/website/entity full length name

index_description

the index description, should be explicit

version

the version of the source dataset

change_log

what have been done from the last version

website

the website to the source dataset website

direct_download

the direct download url of the dataset source

version_date

the version or build date

license

the license attached to this dataset, could be a url

contact

a mailto/contact

references

some paper and other references (e.g. doi, url)

columns

a list of (column_name = column_description) to register (default: list())

force

if FALSE, raise an error if the description already exists, else TRUE to overwrite (default: FALSE)

Details

Add a description of a pushed dataset.

Returns

the index name if complete, else an error

Examples
\dontrun{
kc$add_description(
    index_name = "sw", 
    dataset_name = "starwars", 
    source_name = "Package dplyr", 
    index_description = "Description of starwars characters, the data comes from the Star 
     Wars API.", 
    version = "dplyr (1.0.0)", 
    link = "http://swapi.dev/", 
    direct_download_link = "http://swapi.dev/", 
    version_date = "2020-05-28", 
    license_link = "MIT", 
    columns = list(
        "name" = "Name of the character",
        "height" = "Height (cm)",
        "mass" = "Weight (kg)",
        "hair_color" = "Hair colors",
        "skin_color" = "Skin colors",
        "eye_color" = "Eye colors",
        "birth_year" = "Year born (BBY = Before Battle of Yavin)",
        "sex" = "The biological sex of the character, namely male, female, 
             hermaphroditic, or none (as in the case for Droids).",
        "gender" = "The gender role or gender identity of the character as determined by 
             their personality or the way they were progammed (as in the case for Droids
             ).",
        "homeworld" = "Name of homeworld",
        "species" = "Name of species",
        "films" = "List of films the character appeared in",
        "vehicles" = "List of vehicles the character has piloted",
        "starships" = "List of starships the character has piloted"
    )
)
}


Method has_description()

Usage
Kibior$has_description(index_name)
Arguments
index_name

the index name to describe

Details

Does the description exists?

Returns

a list splitted by index, with TRUE if the description is found, else FALSE. Removes unknown index names.

Examples
\dontrun{
kc$has_description("s*")
kc$has_description(c("sw", "asdf"))
}


Method missing_descriptions()

Usage
Kibior$missing_descriptions()
Details

List indices that do no have descriptions.

Returns

a vector of indices not present in description.

Examples
\dontrun{
kc$missing_descriptions()
}


Method remove_description()

Usage
Kibior$remove_description(index_name)
Arguments
index_name

the index name to describe

Details

Remove a description.

Returns

a vector of indices not present in description.

Examples
\dontrun{
# remove the description of 'test' index
kc$remove_description("test")
}


Method clean_descriptions()

Usage
Kibior$clean_descriptions()
Details

Remove all descriptions that do not have a index associated.

Returns

a list of index names which have been removed from descriptions.

Examples
\dontrun{
# remove the description of 'test' index
kc$clean_descriptions()
}


Method describe()

Usage
Kibior$describe(index_name, columns = NULL, pretty = FALSE)
Arguments
index_name

the index name to describe

columns

a vector of column names to describe (default: NULL)

pretty

pretty-print the result (default: FALSE)

Details

Get the description of indices and their columns.

Returns

all description, grouped by indices

Examples
\dontrun{
kc$describe("s*")
kc$describe("sw", columns = c("name", "height"))
}


Method describe_index()

Usage
Kibior$describe_index(index_name)
Arguments
index_name

the index name to describe

Details

Get the description text of indices.

Returns

a list of description text, grouped by indices

Examples
\dontrun{
kc$describe_index("s*")
}


Method describe_columns()

Usage
Kibior$describe_columns(index_name, columns)
Arguments
index_name

the index name to describe

columns

a vector of column names to describe

Details

Get the description text of index columns.

Returns

a list of description text, grouped by indices

Examples
\dontrun{
kc$describe_columns("s*", c("name", "height"))
}


Method infos()

Usage
Kibior$infos()
Details

Get informations about Elasticsearch cluster

Returns

a list of statistics about the cluster

Examples
\dontrun{
kc$infos()
}


Method ping()

Usage
Kibior$ping()
Details

Ping cluster connection

Returns

the ping result with some basic infos

Examples
\dontrun{
kc$ping()
}


Method mappings()

Usage
Kibior$mappings(index_name)
Arguments
index_name

a vector of index names to get mappings.

Details

Get mappings of indices

Returns

the list of indices, containing their mapping

Examples
\dontrun{
kc$mappings()
kc$mappings("sw")
kc$mappings(c("sw", "sw_naboo"))
}


Method settings()

Usage
Kibior$settings(index_name)
Arguments
index_name

a vector of index names to get settings.

Details

Get settings of indices

Returns

the list of indices, containing their settings

Examples
\dontrun{
kc$settings()
kc$settings("sw")
kc$settings(c("sw", "sw_tatooine"))
}


Method aliases()

Usage
Kibior$aliases(index_name)
Arguments
index_name

a vector of index names to get aliases.

Details

Get aliases of indices

Returns

the list of indices, containing their aliases

Examples
\dontrun{
kc$aliases()
kc$aliases("sw")
kc$aliases(c("sw", "sw_alderaan"))
}


Method dim()

Usage
Kibior$dim(index_name)
Arguments
index_name

a vector of index names to get aliases.

Details

Shortcut to '$count()' to match the classical 'dim()' function pattern '[line col]'

Returns

the list of indices, containing their number of observations and variables.

Examples
\dontrun{
# Couple [<nb obs> <nb var>] in "sw"
kc$dim("sw")
# Couple [<nb obs> <nb var>] in indices "sw_naboo" and "sw_alderaan"
kc$dim(c("sw_naboo", "sw_alderaan"))
}


Method columns()

Usage
Kibior$columns(index_name)
Arguments
index_name

a vector of index names, can be a pattern.

Details

Get fields/columns of indices.

Returns

a list of indices, each containing their fields/columns.

Examples
\dontrun{
kc$columns("sw")          # direct search
kc$columns("sw_*")        # pattern search
}


Method count()

Usage
Kibior$count(index_name, type = "observations", query = NULL)
Arguments
index_name

a vector of index names to get aliases.

type

a string representing the type to count: "observations" (lines) or "variables" (columns) (default: "observations").

query

a string as a query string syntax (default: NULL).

Details

Count observations or variables in Elasticsearch data

Returns

the list of indices, containing their number of observations or variables. Use '$dim()' for both

Examples
\dontrun{
# Number of observations (nb of records) in "sw"
kc$count("sw")
# Number of observations in indices "sw_naboo" and "sw_tatooine"
kc$count(c("sw_naboo", "sw_tatooine"))
# Number of variables (nb of columns) in index "sw_naboo"
kc$count("sw_naboo", type = "variables")
}


Method avg()

Usage
Kibior$avg(index_name, columns, query = NULL)
Arguments
index_name

a vector of index names.

columns

a vector of column names.

query

a string as a query string syntax (default: NULL).

Details

Get the average of numeric columns.

Returns

a tibble with avg, one line by matching index and column.

Examples
\dontrun{
# Avg of "sw" column "height"
kc$avg("sw", "height")
# if pattern
kc$avg("s*", "height")
# multiple indices, multiple columns
kc$avg(c("sw", "sw2"), c("height", "mass"), query = "homeworld:naboo")
}


Method mean()

Usage
Kibior$mean(index_name, columns, query = NULL)
Arguments
index_name

a vector of index names.

columns

a vector of column names.

query

a string as a query string syntax (default: NULL).

Details

Get the mean of numeric columns.

Returns

a tibble with mean, one line by matching index and column.

Examples
\dontrun{
# mean of "sw" column "height"
kc$mean("sw", "height")
# if pattern
kc$mean("s*", "height")
# multiple indices, multiple columns
kc$mean(c("sw", "sw2"), c("height", "mass"), query = "homeworld:naboo")
}


Method min()

Usage
Kibior$min(index_name, columns, query = NULL)
Arguments
index_name

a vector of index names.

columns

a vector of column names.

query

a string as a query string syntax (default: NULL).

Details

Get the minimum of numeric columns.

Returns

a tibble with min, one line by matching index and column.

Examples
\dontrun{
# min of "sw" column "height"
kc$min("sw", "height")
# if pattern
kc$min("s*", "height")
# multiple indices, multiple columns
kc$min(c("sw", "sw2"), c("height", "mass"), query = "homeworld:naboo")
}


Method max()

Usage
Kibior$max(index_name, columns, query = NULL)
Arguments
index_name

a vector of index names.

columns

a vector of column names.

query

a string as a query string syntax (default: NULL).

Details

Get the maximum of numeric columns.

Returns

a tibble with max, one line by matching index and column.

Examples
\dontrun{
# max of "sw" column "height"
kc$max("sw", "height")
# if pattern
kc$max("s*", "height")
# multiple indices, multiple columns
kc$max(c("sw", "sw2"), c("height", "mass"), query = "homeworld:naboo")
}


Method sum()

Usage
Kibior$sum(index_name, columns, query = NULL)
Arguments
index_name

a vector of index names.

columns

a vector of column names.

query

a string as a query string syntax (default: NULL).

Details

Get the sum of numeric columns.

Returns

a tibble with sum, one line by matching index and column.

Examples
\dontrun{
# sum of "sw" column "height"
kc$sum("sw", "height")
# if pattern
kc$sum("s*", "height")
# multiple indices, multiple columns
kc$sum(c("sw", "sw2"), c("height", "mass"), query = "homeworld:naboo")
}


Method stats()

Usage
Kibior$stats(index_name, columns, sigma = NULL, query = NULL)
Arguments
index_name

a vector of index names.

columns

a vector of column names.

sigma

(default: NULL).

query

a string as a query string syntax (default: NULL).

Details

Produces descriptive statistics of a column. Returns a tibble composed of: count, min, max, avg, sum, sum_of_squares, variance, std_deviation (+ upper and lower bounds). Multiple warnings here. One for the count and one for the std_dev. 1/ Counts: they are approximate, see vignette. 2/ Std dev: as stated in ES documentation: "The standard deviation and its bounds are displayed by default, but they are not always applicable to all data-sets. Your data must be normally distributed for the metrics to make sense. The statistics behind standard deviations assumes normally distributed data, so if your data is skewed heavily left or right, the value returned will be misleading."

Returns

a tibble with descriptive stats, one line by matching index.

Examples
\dontrun{
# Stats of "sw" column "height"
kc$stats("sw", "height")
# if pattern
kc$stats("s*", "height")
# multiple indices and sigma definition
kc$stats(c("sw", "sw2"), "height", sigma = 2.5)
# multiple indices, multiple columns
kc$stats(c("sw", "sw2"), c("height", "mass"), query = "homeworld:naboo")
}


Method percentiles()

Usage
Kibior$percentiles(index_name, columns, percents = NULL, query = NULL)
Arguments
index_name

a vector of index names.

columns

a vector of column names.

percents

a numeric vector of pecents to use (default: NULL).

query

a string as a query string syntax (default: NULL).

Details

Get percentiles of numeric columns.

Returns

a list of tibble, splitted by indices with percentiles inside tibble columns.

Examples
\dontrun{
# percentiles of "sw" column "height", default is with q1, q2 and q3
kc$percentiles("sw", "height")
# if pattern
kc$percentiles("s*", "height")
# defining percents to get
kc$percentiles("s*", "height", percents = c(20, 25))
# multiple indices, multiple columns
kc$percentiles(c("sw", "sw2"), c("height", "mass"), query = "homeworld:naboo")
}


Method q1()

Usage
Kibior$q1(index_name, columns, query = NULL)
Arguments
index_name

a vector of index names.

columns

a vector of column names.

query

a string as a query string syntax (default: NULL).

Details

Get Q1 percentiles from numeric columns.

Returns

a list of tibble, splitted by indices with Q1 inside tibble columns.

Examples
\dontrun{
# Q1 of "sw" column "height"
kc$q1("sw", "height")
# if pattern
kc$q1("s*", "height")
# multiple indices, multiple columns
kc$q1(c("sw", "sw2"), c("height", "mass"), query = "homeworld:naboo")
}


Method q2()

Usage
Kibior$q2(index_name, columns, query = NULL)
Arguments
index_name

a vector of index names.

columns

a vector of column names.

query

a string as a query string syntax (default: NULL).

Details

Get Q2 percentiles from numeric columns.

Returns

a list of tibble, splitted by indices with Q2 inside tibble columns.

Examples
\dontrun{
# Q2 of "sw" column "height"
kc$q2("sw", "height")
# if pattern
kc$q2("s*", "height")
# multiple indices, multiple columns
kc$q2(c("sw", "sw2"), c("height", "mass"), query = "homeworld:naboo")
}


Method median()

Usage
Kibior$median(index_name, columns, query = NULL)
Arguments
index_name

a vector of index names.

columns

a vector of column names.

query

a string as a query string syntax (default: NULL).

Details

Get median from numeric columns. Basically a wrapper around '$q2()'.

Returns

a list of tibble, splitted by indices with median inside tibble columns.

Examples
\dontrun{
# median of "sw" column "height"
kc$median("sw", "height")
# if pattern
kc$median("s*", "height")
# multiple indices, multiple columns
kc$median(c("sw", "sw2"), c("height", "mass"), query = "homeworld:naboo")
}


Method q3()

Usage
Kibior$q3(index_name, columns, query = NULL)
Arguments
index_name

a vector of index names.

columns

a vector of column names.

query

a string as a query string syntax (default: NULL).

Details

Get Q3 percentiles from numeric columns.

Returns

a list of tibble, splitted by indices with Q3 inside tibble columns.

Examples
\dontrun{
# Q3 of "sw" column "height"
kc$q3("sw", "height")
# if pattern
kc$q3("s*", "height")
# multiple indices, multiple columns
kc$q3(c("sw", "sw2"), c("height", "mass"), query = "homeworld:naboo")
}


Method summary()

Usage
Kibior$summary(index_name, columns, query = NULL)
Arguments
index_name

a vector of index names.

columns

a vector of column names.

query

a string as a query string syntax (default: NULL).

Details

Summary for numeric columns. Cumulates '$min()', '$max()', '$q1()', '$q2()', '$q3()'.

Returns

a list of tibble, splitted by indices.

Examples
\dontrun{
# summary of "sw" column "height"
kc$summary("sw", "height")
# if pattern
kc$summary("s*", "height")
# multiple indices, multiple columns
kc$summary(c("sw", "sw2"), c("height", "mass"), query = "homeworld:naboo")
}


Method keys()

Usage
Kibior$keys(index_name, column, max_size = 1000)
Arguments
index_name

an index name.

column

a field name of this index (default: NULL).

max_size

the maximum result to return (default: 1000).

Details

Get distinct keys elements of a specific column.

Returns

a vector of keys values from this field/column

Examples
\dontrun{
kc$keys("sw", "name")
kc$keys("sw", "eye_color")
}


Method bam_to_tibble()

Usage
Kibior$bam_to_tibble(bam_data = NULL)
Arguments
bam_data

data from a BAM file (default: NULL).

Details

Transformation function for collapsing the BAM list of lists format into a single list as per the Rsamtools vignette

Returns

a tibble of BAM data

Examples
\dontrun{
dd_bai <- system.file("extdata", "test.bam.bai", package = "kibior")
bam_param <- Rsamtools::ScanBamParam(what = c("pos", "qwidth"))
bam_data <- Rsamtools::scanBam(dd_bai, param = bam_param)
kc$bam_to_tibble(bam_data)
}


Method soft_cast()

Usage
Kibior$soft_cast(
  data,
  caster = getFromNamespace("as_tibble", "tibble"),
  caster_args = list(.name_repair = "unique"),
  warn = TRUE
)
Arguments
data

data to cast.

caster

the caster closure/function (default: tibble::as_tibble)

caster_args

others caster args (default: list(.name_repair = "unique"))

warn

do print warning if error? (default: TRUE)

Details

Casting function that tries to cast a transformation closure. Uses tibble::as_tibble() by default.

Returns

a cast or the unchanged data.

Examples
\dontrun{
kc$soft_cast(datasets::iris)
}


Method get_resource()

Usage
Kibior$get_resource(url_or_filepath, fileext = NULL)
Arguments
url_or_filepath

a filepath or an URL.

fileext

the file extension (default: NULL).

Details

Get a local filepath or an URL data through a tempfile. If the file exists locally, the filepath will be returned, if not, it will tries to download the data and return the temp filepath.

Returns

a filepath.

Examples
\dontrun{
kc$get_resource(system.file("R", "kibior.R", package = "kibior"))
kc$get_resource("https://ftp.ncbi.nlm.nih.gov/entrez/README")
}


Method export()

Usage
Kibior$export(data, filepath, format = "csv", force = FALSE)
Arguments
data

an index name or in-memory data to be extracted to a file.

filepath

the filepath to use as export, must contain the file extention.

format

the file format to use (default: "csv").

force

overwrite the file? (default: FALSE).

Details

Export data to a file. Needs 'rio' package from CRAN. Some data formats are not installed by default. Use 'rio::install_formats()' to be able to parse them.

Returns

the filepath if correctly exported, else an error

Examples
\dontrun{
f <- tempfile(fileext=".csv")
# export and overwrite last file with the same data from Elasticsearch
kc$export(data = "sw", filepath = f)
# export from in-memory data to a file
kc$export(data = dplyr::starwars, filepath = f, force = TRUE)
}


Method import_tabular()

Usage
Kibior$import_tabular(filepath, to_tibble = TRUE, fileext = ".csv")
Arguments
filepath

the filepath to use as import, must contain the file extention.

to_tibble

returns the result as tibble? If FALSE, the raw default rio::import() format will be used (default: TRUE).

fileext

the file extension (default: ".csv").

Details

Import method for tabular data. Needs 'rio' package from CRAN. Works mainly with CSV, TSV, TAB, TXT and ZIPped formats.

Returns

data contained in the file as a tibble, or NULL.

Examples
\dontrun{
f <- tempfile(fileext = ".csv")
rio::export(ggplot2::diamonds, f)
# import to in-memory variable
kc$import_tabular(filepath = f)
# import raw data
kc$import_tabular(filepath = f, to_tibble = FALSE)
}


Method import_features()

Usage
Kibior$import_features(filepath, to_tibble = TRUE, fileext = ".gtf")
Arguments
filepath

the filepath to use as import, must contain the file extention.

to_tibble

returns the result as tibble? If FALSE, the raw default rtracklayer::import() format will be used (default: TRUE).

fileext

the file extension (default: ".gtf").

Details

Import method for features data. Needs 'rtracklayer' package from Bioconductor. Works with BED, GTF, GFFx, and GZIPped formats.

Returns

data contained in the file as a tibble, or NULL.

Examples
\dontrun{
# get sample files
f_gff <- system.file("extdata", "chr_y.gff3.gz", package = "kibior")
f_bed <- system.file("extdata", "cpg.bed", package = "kibior")
# import to in-memory variable
kc$import_features(filepath = f_bed)
kc$import_features(filepath = f_gff)
# import raw data
kc$import_features(filepath = f_bed, to_tibble = FALSE)
kc$import_features(filepath = f_gff, to_tibble = FALSE)
}


Method import_alignments()

Usage
Kibior$import_alignments(filepath, to_tibble = TRUE, fileext = ".bam")
Arguments
filepath

the filepath to use as import, should contain the file extention.

to_tibble

returns the result as tibble? If FALSE, the raw default Rsamtools::scanBam() format will be used (default: TRUE).

fileext

the file extension (default: ".bam").

Details

Import method for alignments data. Needs 'Rsamtools' packages from Bioconductor. Works with BAM format.

Returns

data contained in the file as a tibble, or NULL.

Examples
\dontrun{
# get sample file
f_bai <- system.file("extdata", "test.bam.bai", package = "kibior")
# import to in-memory variable
kc$import_alignments(filepath = f_bai)
# import raw data
kc$import_alignments(filepath = f_bai, to_tibble = FALSE)
}


Method import_json()

Usage
Kibior$import_json(filepath, to_tibble = TRUE, fileext = ".json")
Arguments
filepath

the filepath to use as import, should contain the file extention.

to_tibble

returns the result as tibble? If FALSE, the raw dataframe format will be used (default: TRUE).

fileext

the file extension (default: ".json").

Details

Import method for JSON format. Needs 'jsonlite' packages from CRAN.

Returns

data contained in the file as a tibble, dataframe or NULL.

Examples
\dontrun{
# get sample file
f_json <- system.file("extdata", "storms100.json", package = "kibior")
# import to in-memory variable
kc$import_json(f_json)
# import raw data
kc$import_json(f_json, to_tibble = FALSE)
}


Method import_sequences()

Usage
Kibior$import_sequences(filepath, to_tibble = TRUE, fasta_type = "auto")
Arguments
filepath

the filepath to use as import, should contain the file extention.

to_tibble

returns the result as tibble? If FALSE, the raw default Rsamtools::scanBam() format will be used (default: TRUE).

fasta_type

type of parsing. It can be "dna", "rna", "aa" ou "auto" (default: "auto")

Details

Import method for sequences data. Needs 'Biostrings' package from Bioconductor. Works with FASTA formats.

Returns

data contained in the file as a tibble, or NULL.

Examples
\dontrun{
# get sample file
f_dna <- system.file("extdata", "dna_human_y.fa.gz", package = "kibior")
f_rna <- system.file("extdata", "ncrna_mus_musculus.fa.gz", package = "kibior")
f_aa <- system.file("extdata", "pep_mus_spretus.fa.gz", package = "kibior")
# import to in-memory variable
kc$import_sequences(filepath = f_dna, fasta_type = "dna")
# import raw data
kc$import_sequences(filepath = f_rna, to_tibble = FALSE, fasta_type = "rna")
# import auto
kc$import_sequences(filepath = f_aa)
}


Method guess_import()

Usage
Kibior$guess_import(filepath, to_tibble = TRUE)
Arguments
filepath

the filepath to use as import, must contain the file extention.

to_tibble

returns the result as tibble? (default: TRUE).

Details

Import method that will try to guess importation method. Will also try to read from compressed data if they are. This method will call other import_* methods when trying. Some data formats are not installed by default. Use 'rio::install_formats()' to be able to parse them.

Returns

data contained in the file, or NULL.

Examples
\dontrun{
# get sample file
f_dna <- system.file("extdata", "dna_human_y.fa.gz", package = "kibior")
f_rna <- system.file("extdata", "ncrna_mus_musculus.fa.gz", package = "kibior")
f_aa <- system.file("extdata", "pep_mus_spretus.fa.gz", package = "kibior")
f_bai <- system.file("extdata", "test.bam.bai", package = "kibior")
f_gff <- system.file("extdata", "chr_y.gff3.gz", package = "kibior")
f_bed <- system.file("extdata", "cpg.bed", package = "kibior")
# import 
kc$guess_import(f_dna)
kc$guess_import(f_rna)
kc$guess_import(f_aa)
kc$guess_import(f_bai)
kc$guess_import(f_gff)
kc$guess_import(f_bed)
}


Method import()

Usage
Kibior$import(
  filepath,
  import_type = "auto",
  push_index = NULL,
  push_mode = "check",
  id_col = NULL,
  to_tibble = TRUE
)
Arguments
filepath

the filepath to use as import, must contain the file extention.

import_type

can be one of "auto", "tabular", "features", "alignments", "sequences" (default: "auto").

push_index

the name of the index where to push data (default: NULL).

push_mode

the push mode (default: "check").

id_col

the column name of unique IDs (default: NULL).

to_tibble

returns the result as tibble? (default: TRUE).

Details

Generic import method. This method will call other import_* methods when trying. Some data formats are not installed by default.

Returns

data contained in the file, or NULL.

Examples
\dontrun{
# get sample file
f_aa <- system.file("extdata", "pep_mus_spretus.fa.gz", package = "kibior")
f_gff <- system.file("extdata", "chr_y.gff3.gz", package = "kibior")
f_bai <- system.file("extdata", "test.bam.bai", package = "kibior")
# import 
kc$import(filepath = f_aa)
# import to Elasticsearch index ("sw_from_file") if not exists
kc$import(filepath = f_bai, push_index = "sw_from_file")
# import to index by recreating it, then pull indexed data
kc$import(filepath = f_gff, push_index = "sw_from_file",
 push_mode = "recreate")
}


Method push()

Usage
Kibior$push(data, index_name, bulk_size = 1000, mode = "check", id_col = NULL)
Arguments
data

the data to push.

index_name

the index name to use in Elasticsearch.

bulk_size

the number of record to send to Elasticsearch in a row (default: 1000).

mode

the push mode, could be "check", "recreate" or "update" (default: "check").

id_col

an column anme to use as ID, must be composed of unique elements (default: NULL).

Details

Push data from in-memory to Elasticsearch. Everything is done by bulk.

Returns

the index_name given if the push ended well, else an error.

Examples
\dontrun{
# erase the last push data by recreating the index and re-pushing data
kc$push(dplyr::starwars, index_name = "sw", mode = "recreate")
# characters names are unique, can be used as ID
kc$push(dplyr::starwars, index_name = "sw", mode = "recreate", id_col = "name")
# a bit more complicated: update some data of the dataset "starwars"
# 38 records on 87 filtered
some_new_data <- dplyr::filter(dplyr::starwars, height > 180)
# make them all "gender <- female"
some_new_data["gender"] <- "female"
# update that apply, based on cahracter names to match the right record
kc$push(some_new_data, "sw", mode = "update", id_col = "name")
# view result by querying
kc$pull("sw", query = "height:>180", columns = c("name", "gender"))
}


Method pull()

Usage
Kibior$pull(
  index_name,
  bulk_size = 500,
  max_size = NULL,
  scroll_timer = "3m",
  keep_metadata = FALSE,
  columns = NULL,
  query = NULL
)
Arguments
index_name

the index name to use in Elasticsearch.

bulk_size

the number of record to send to Elasticsearch in a row (default: 500).

max_size

the number of record Elasticsearch will send (default: NULL (all data)).

scroll_timer

the time the scroll API will let the request alive to scroll on the result (default: "3m" (3 minute)).

keep_metadata

does Elasticsearch needs to sent metadata? Data columns will be prefixed by "_source." (default: FALSE).

columns

a vector of columns to select (default: NULL (all columns)).

query

a string formatted to Elasticsearch query syntax, see links for the syntax details (default: NULL)

# Simple syntax details:

Details

Pull data from Elasticsearch. Everything is done by bulk. This method is essentially a wrapper around '$search()' with parameter 'head = FALSE'

Returns

a list of datasets corresponding to the pull request, else an error. Keys of the list are index names matching the request, value are the associated tibbles

Examples
\dontrun{
# push some data sample
kc$push(dplyr::storms, "storms")
# get the whole "sw" index
kc$pull("sw")
# get the whole "sw" index with all metadata
kc$pull("sw", keep_metadata = TRUE)
# get only "name" and "status" columns of indices starting with "s"
# columns not found will be ignored
kc$pull("s*", columns = c("name", "status"))
# limit the size of the result to 10
kc$pull("storms", max_size = 10, bulk_size = 10)
# use Elasticsearch query syntax to select and filter on all indices, for all data
# Here, we want to search for all records taht match the conditions:
# field "height" is strictly more than 180 AND field homeworld is "Tatooine" OR "Naboo"
r <- kc$pull("sw", query = "height:>180 && homeworld:(Tatooine || Naboo)")
# it can be used in conjunction with `columns` to select only columns that matter
r <- kc$pull("sw", query = "height:>180 && homeworld:(Tatooine || Naboo)", columns = 
 c("name", "hair_color", "homeworld"))
}


Method move()

Usage
Kibior$move(
  from_index,
  to_index,
  from_instance = NULL,
  force = FALSE,
  copy = FALSE
)
Arguments
from_index

The source index name (default: NULL).

to_index

The destination index name (default: NULL).

from_instance

If not NULL, the Kibior object of another instance. if NULL (default), this instance will be used. (default: NULL).

force

Does the destination index need to be erase? (default: FALSE)

copy

Does the destination have to be a copy of the source? FALSE (default) will delete source index, TRUE will keep it. (default: FALSE).

Details

Move data from one index to another. It needs to be configured in the 'config/elasticsearch.yml' file to actually work.

Returns

the reindex result

Examples
\dontrun{
kc$push(dplyr::starwars, "sw", mode = "recreate")
# move data from an index to another (change name, same instance)
r <- kc$move(from_index = "sw", to_index = "sw_new")
kc$pull("sw_new")
kc$list()
} 


Method copy()

Usage
Kibior$copy(from_index, to_index, from_instance = NULL, force = FALSE)
Arguments
from_index

The source index name (default: NULL).

to_index

The destination index name (default: NULL).

from_instance

If not NULL, the Kibior object of another instance. if NULL (default), this instance will be used. (default: NULL).

force

Does the destination index need to be erase? (default: FALSE)

Details

Copy data from one index to another. It needs to be configured in the 'config/elasticsearch.yml' file to actually work. This method is a wrapper around '$move(copy = TRUE)'.

Returns

the reindex result

Examples
\dontrun{
# copy data from one index to another (same instance)
r <- kc$copy(from_index = "sw_new", to_index = "sw")
kc$pull(c("sw", "sw_new"))
kc$list()
} 


Method match()

Usage
Kibior$match(index_name)
Arguments
index_name

the index name to use in Elasticsearch, can be a pattern with '*'.

Details

Match requested index names against Elasticsearch indices list.

Returns

a vector of matching index names, NULL if nothing matches.

Examples
\dontrun{
# search "sw" index name
kc$match("sw")
# search all starting with an "s"
kc$match("s*")
# get all index name, identical to `$list()`
kc$match("*")
# search multiple names 
kc$match(c("sw", "sw_new", "nope"))
# search multiple names with pattern
kc$match(c("s*", "nope"))
}


Method search()

Usage
Kibior$search(
  index_name = "_all",
  keep_metadata = FALSE,
  columns = NULL,
  bulk_size = 500,
  max_size = NULL,
  scroll_timer = "3m",
  head = TRUE,
  query = NULL
)
Arguments
index_name

the index name to use in Elasticsearch (default: NULL).

keep_metadata

does Elasticsearch needs to sent metadata? Data columns will be prefixed by "_source." (default: FALSE).

columns

a vector of columns to select (default: NULL (all columns)).

bulk_size

the number of record to send to Elasticsearch in a row (default: 500).

max_size

the number of record Elasticsearch will send (default: NULL (all data)).

scroll_timer

the time the scroll API will let the request alive to scroll on the result (default: "3m" (3 minutes)).

head

a boolean limiting the search result and time (default: TRUE)

query

a string formatted to Elasticsearch query syntax, see links for the syntax details (default: NULL)

Details

Search data from Elasticsearch. The goal of this method is to discover quickly what data are interesting, thus 'head = TRUE' by default. If you want to get all data, use 'head = FALSE' or '$pull()'. Everything is done by bulk.

Returns

a list of datasets corresponding to the pull request, else an error. Keys of the list are index names matching the request, value are the associated tibbles

Examples
\dontrun{
# search "sw" index, head mode on
kc$search("sw")
# search "sw" index with all metadata, head mode on
kc$search("sw", keep_metadata = TRUE)
# get only "name" field of the head of indices starting with "s"
# if an index does not have the "name" field, it will be empty
kc$search("s*", columns = "name")
# limit the size of the result to 50 to the whole index
kc$search("storms", max_size = 50, bulk_size = 50, head = FALSE)
# use Elasticsearch query syntax to select and filter on all indices, for all data
# Here, we want to search for all records taht match the conditions:
# field "height" is strictly more than 180 AND field homeworld is "Tatooine" OR "Naboo"
kc$search("*", query = "height:>180 && homeworld:(Tatooine || Naboo)")
# it can be used in conjunction with `columns` to select only columns that matter
kc$search("*", query = "height:>180 && homeworld:(Tatooine || Naboo)", columns = 
 c("name", "hair_color", "homeworld"))
}


Method inner_join()

Usage
Kibior$inner_join(...)
Arguments
...

see 'join()' params.

Details

Execute a inner join between two datasets using 'dplyr' joins. The datasets can be in-memory (variable name) or the name of an currently stored Elasticsearch index. Joins cannot be done on column of type "list" ("by" argument).

Returns

a tibble

Examples
\dontrun{
# some data for joins examples
kc$push(ggplot2::diamonds, "diamonds")
# prepare join datasets, only big the biggest diamonds are selected (9)
sup_carat <- dplyr::filter(ggplot2::diamonds, carat > 3.5)
r <- kc$push(sup_carat, "diamonds_superior")
# execute a inner_join with one index and one in-memory dataset
kc$inner_join(ggplot2::diamonds, "diamonds_superior")
# execute a inner_join with one index queried, and one in-memory dataset
kc$inner_join(ggplot2::diamonds, "diamonds", right_query 
 = "carat:>3.5")
}


Method full_join()

Usage
Kibior$full_join(...)
Arguments
...

see 'join()' params.

Details

Execute a full join between two datasets using 'dplyr' joins. The datasets can be in-memory (variable name) or the name of an currently stored Elasticsearch index. Joins cannot be done on column of type "list" ("by" argument).

Returns

a tibble

Examples
\dontrun{
# prepare join datasets, fair cuts 
fair_cut <- dplyr::filter(ggplot2::diamonds, cut == "Fair")  # 1605 lines
sup_carat <- kc$pull("diamonds_superior")$diamonds_superior
# execute a full_join with one index and one in-memory dataset
kc$full_join(fair_cut, "diamonds_superior")
# execute a full_join with one index queried, and one in-memory dataset
kc$full_join(sup_carat, "diamonds", right_query = "cut:fair")
}


Method left_join()

Usage
Kibior$left_join(...)
Arguments
...

see 'join()' params.

Details

Execute a left join between two datasets using 'dplyr' joins. The datasets can be in-memory (variable name) or the name of an currently stored Elasticsearch index. Joins cannot be done on column of type "list" ("by" argument).

Returns

a tibble

Examples
\dontrun{
# prepare join datasets, fair cuts 
fair_cut <- dplyr::filter(ggplot2::diamonds, cut == "Fair")  # 1605 lines
sup_carat <- kc$pull("diamonds_superior")$diamonds_superior
# execute a left_join with one index and one in-memory dataset
kc$left_join(fair_cut, "diamonds_superior")
# execute a left_join with one index queried, and one in-memory dataset
kc$left_join(sup_carat, "diamonds", right_query 
 = "cut:fair")
}


Method right_join()

Usage
Kibior$right_join(...)
Arguments
...

see 'join()' params.

Details

Execute a right join between two datasets using 'dplyr' joins. The datasets can be in-memory (variable name) or the name of an currently stored Elasticsearch index. Joins cannot be done on column of type "list" ("by" argument).

Returns

a tibble

Examples
\dontrun{
# prepare join datasets, fair cuts 
fair_cut <- dplyr::filter(ggplot2::diamonds, cut == "Fair")  # 1605 lines
sup_carat <- kc$pull("diamonds_superior")$diamonds_superior
# execute a right_join with one index and one in-memory dataset
kc$right_join(fair_cut, "diamonds_superior")
# execute a right_join with one index queried, and one in-memory dataset
kc$right_join(sup_carat, "diamonds", right_query 
 = "cut:fair")
}


Method semi_join()

Usage
Kibior$semi_join(...)
Arguments
...

see 'join()' params.

Details

Execute a semi join between two datasets using 'dplyr' joins. The datasets can be in-memory (variable name) or the name of an currently stored Elasticsearch index. Joins cannot be done on column of type "list" ("by" argument).

Returns

a tibble

Examples
\dontrun{
# prepare join datasets, fair cuts 
fair_cut <- dplyr::filter(ggplot2::diamonds, cut == "Fair")  # 1605 lines
sup_carat <- kc$pull("diamonds_superior")$diamonds_superior
# execute a semi_join with one index and one in-memory dataset
kc$semi_join(fair_cut, "diamonds_superior")
# execute a semi_join with one index queried, and one in-memory dataset
kc$semi_join(sup_carat, "diamonds", right_query 
 = "cut:fair")
}


Method anti_join()

Usage
Kibior$anti_join(...)
Arguments
...

see 'join()' params.

Details

Execute a anti join between two datasets using 'dplyr' joins. The datasets can be in-memory (variable name) or the name of an currently stored Elasticsearch index. Joins cannot be done on column of type "list" ("by" argument).

Returns

a tibble

Examples
\dontrun{
# prepare join datasets, fair cuts 
fair_cut <- dplyr::filter(ggplot2::diamonds, cut == "Fair")  # 1605 lines
sup_carat <- kc$pull("diamonds_superior")$diamonds_superior
# execute a anti_join with one index and one in-memory dataset
kc$anti_join(fair_cut, "diamonds_superior")
# execute a anti_join with one index queried, and one in-memory dataset
kc$anti_join(sup_carat, "diamonds", right_query 
 = "cut:fair")
# 
# Do not mind this, removing example indices
elastic::index_delete(kc$connection, "*")
kc <- NULL
}


Method clone()

The objects of this class are cloneable with this method.

Usage
Kibior$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RĂ©gis Ongaro-Carcy, regis.ongaro-carcy2@crchudequebec.ulaval.ca

References

Kibio.science: http://kibio.science,
Elasticsearch documentation: https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html

See Also

kibior

you should use count for more accurate count.

https://www.elastic.co/guide/en/elasticsearch/reference/current/common-options.html#time-units for time-units and https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html#query-string-syntax for the Elasticsearch query string syntax.

: https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-reindex.html Elasticsearch reindex feature for more information.

: https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-reindex.html Elasticsearch reindex feature for more information.

https://www.elastic.co/guide/en/elasticsearch/reference/current/common-options.html#time-units for time-units and https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html#query-string-syntax for the Elasticsearch query string syntax.

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
## ------------------------------------------------
## Method `Kibior$new`
## ------------------------------------------------

## Not run: 
# default initiatlization, connect to "localhost:9200"
kc <- Kibior$new()
# connect to "192.168.2.145:9200"
kc <- Kibior$new("192.168.2.145")
# connect to "es:15005", verbose mode activated
kc <- Kibior$new(host = "elasticsearch", port = 15005, verbose = TRUE)
# connect to "192.168.2.145:9450" with credentials "foo:bar"
kc <- Kibior$new(host = "192.168.2.145", port = 9450, user = "foo", pwd = "bar")
# connect to "elasticsearch:9200"
kc <- Kibior$new("elasticsearch")

# get kibior var from env (".Renviron" file or local env) 
dd <- system.file("doc_env", "kibior_build.R", package = "kibior")
source(dd, local = TRUE)
kc <- .kibior_get_instance_from_env()
kc$quiet_progress <- TRUE

# preparing all examples (do not mind this for this method)
delete_if_exists <- function(index_names){
    tryCatch(
        expr = { kc$delete(index_names) },
        error = function(e){  }
    )
}
delete_if_exists(c(
    "aaa", 
    "bbb", 
    "ccc", 
    "ddd", 
    "sw", 
    "sw_naboo", 
    "sw_tatooine", 
    "sw_alderaan", 
    "sw_from_file", 
    "storms",
    "starwars"
))

## End(Not run)


## ------------------------------------------------
## Method `Kibior$print`
## ------------------------------------------------

## Not run: 
print(kc)

## End(Not run)



## ------------------------------------------------
## Method `Kibior$eq`
## ------------------------------------------------

## Not run: 
kc$eq(kc)

## End(Not run)



## ------------------------------------------------
## Method `Kibior$ne`
## ------------------------------------------------

## Not run: 
kc$ne(kc)

## End(Not run)


## ------------------------------------------------
## Method `Kibior$create`
## ------------------------------------------------

## Not run: 
kc$create("aaa")
kc$create(c("bbb", "ccc"))

## End(Not run)


## ------------------------------------------------
## Method `Kibior$list`
## ------------------------------------------------

## Not run: 
kc$list()
kc$list(get_specials = TRUE)

## End(Not run)


## ------------------------------------------------
## Method `Kibior$has`
## ------------------------------------------------

## Not run: 
kc$has("aaa")
kc$has(c("bbb", "ccc"))

## End(Not run)


## ------------------------------------------------
## Method `Kibior$delete`
## ------------------------------------------------

## Not run: 
kc$delete("aaa")
kc$delete(c("bbb", "ccc"))

## End(Not run)


## ------------------------------------------------
## Method `Kibior$add_description`
## ------------------------------------------------

## Not run: 
kc$add_description(
    index_name = "sw", 
    dataset_name = "starwars", 
    source_name = "Package dplyr", 
    index_description = "Description of starwars characters, the data comes from the Star 
     Wars API.", 
    version = "dplyr (1.0.0)", 
    link = "http://swapi.dev/", 
    direct_download_link = "http://swapi.dev/", 
    version_date = "2020-05-28", 
    license_link = "MIT", 
    columns = list(
        "name" = "Name of the character",
        "height" = "Height (cm)",
        "mass" = "Weight (kg)",
        "hair_color" = "Hair colors",
        "skin_color" = "Skin colors",
        "eye_color" = "Eye colors",
        "birth_year" = "Year born (BBY = Before Battle of Yavin)",
        "sex" = "The biological sex of the character, namely male, female, 
             hermaphroditic, or none (as in the case for Droids).",
        "gender" = "The gender role or gender identity of the character as determined by 
             their personality or the way they were progammed (as in the case for Droids
             ).",
        "homeworld" = "Name of homeworld",
        "species" = "Name of species",
        "films" = "List of films the character appeared in",
        "vehicles" = "List of vehicles the character has piloted",
        "starships" = "List of starships the character has piloted"
    )
)

## End(Not run)


## ------------------------------------------------
## Method `Kibior$has_description`
## ------------------------------------------------

## Not run: 
kc$has_description("s*")
kc$has_description(c("sw", "asdf"))

## End(Not run)


## ------------------------------------------------
## Method `Kibior$missing_descriptions`
## ------------------------------------------------

## Not run: 
kc$missing_descriptions()

## End(Not run)


## ------------------------------------------------
## Method `Kibior$remove_description`
## ------------------------------------------------

## Not run: 
# remove the description of 'test' index
kc$remove_description("test")

## End(Not run)


## ------------------------------------------------
## Method `Kibior$clean_descriptions`
## ------------------------------------------------

## Not run: 
# remove the description of 'test' index
kc$clean_descriptions()

## End(Not run)


## ------------------------------------------------
## Method `Kibior$describe`
## ------------------------------------------------

## Not run: 
kc$describe("s*")
kc$describe("sw", columns = c("name", "height"))

## End(Not run)


## ------------------------------------------------
## Method `Kibior$describe_index`
## ------------------------------------------------

## Not run: 
kc$describe_index("s*")

## End(Not run)


## ------------------------------------------------
## Method `Kibior$describe_columns`
## ------------------------------------------------

## Not run: 
kc$describe_columns("s*", c("name", "height"))

## End(Not run)


## ------------------------------------------------
## Method `Kibior$infos`
## ------------------------------------------------

## Not run: 
kc$infos()

## End(Not run)


## ------------------------------------------------
## Method `Kibior$ping`
## ------------------------------------------------

## Not run: 
kc$ping()

## End(Not run)


## ------------------------------------------------
## Method `Kibior$mappings`
## ------------------------------------------------

## Not run: 
kc$mappings()
kc$mappings("sw")
kc$mappings(c("sw", "sw_naboo"))

## End(Not run)


## ------------------------------------------------
## Method `Kibior$settings`
## ------------------------------------------------

## Not run: 
kc$settings()
kc$settings("sw")
kc$settings(c("sw", "sw_tatooine"))

## End(Not run)


## ------------------------------------------------
## Method `Kibior$aliases`
## ------------------------------------------------

## Not run: 
kc$aliases()
kc$aliases("sw")
kc$aliases(c("sw", "sw_alderaan"))

## End(Not run)


## ------------------------------------------------
## Method `Kibior$dim`
## ------------------------------------------------

## Not run: 
# Couple [<nb obs> <nb var>] in "sw"
kc$dim("sw")
# Couple [<nb obs> <nb var>] in indices "sw_naboo" and "sw_alderaan"
kc$dim(c("sw_naboo", "sw_alderaan"))

## End(Not run)


## ------------------------------------------------
## Method `Kibior$columns`
## ------------------------------------------------

## Not run: 
kc$columns("sw")          # direct search
kc$columns("sw_*")        # pattern search

## End(Not run)


## ------------------------------------------------
## Method `Kibior$count`
## ------------------------------------------------

## Not run: 
# Number of observations (nb of records) in "sw"
kc$count("sw")
# Number of observations in indices "sw_naboo" and "sw_tatooine"
kc$count(c("sw_naboo", "sw_tatooine"))
# Number of variables (nb of columns) in index "sw_naboo"
kc$count("sw_naboo", type = "variables")

## End(Not run)


## ------------------------------------------------
## Method `Kibior$avg`
## ------------------------------------------------

## Not run: 
# Avg of "sw" column "height"
kc$avg("sw", "height")
# if pattern
kc$avg("s*", "height")
# multiple indices, multiple columns
kc$avg(c("sw", "sw2"), c("height", "mass"), query = "homeworld:naboo")

## End(Not run)


## ------------------------------------------------
## Method `Kibior$mean`
## ------------------------------------------------

## Not run: 
# mean of "sw" column "height"
kc$mean("sw", "height")
# if pattern
kc$mean("s*", "height")
# multiple indices, multiple columns
kc$mean(c("sw", "sw2"), c("height", "mass"), query = "homeworld:naboo")

## End(Not run)


## ------------------------------------------------
## Method `Kibior$min`
## ------------------------------------------------

## Not run: 
# min of "sw" column "height"
kc$min("sw", "height")
# if pattern
kc$min("s*", "height")
# multiple indices, multiple columns
kc$min(c("sw", "sw2"), c("height", "mass"), query = "homeworld:naboo")

## End(Not run)


## ------------------------------------------------
## Method `Kibior$max`
## ------------------------------------------------

## Not run: 
# max of "sw" column "height"
kc$max("sw", "height")
# if pattern
kc$max("s*", "height")
# multiple indices, multiple columns
kc$max(c("sw", "sw2"), c("height", "mass"), query = "homeworld:naboo")

## End(Not run)


## ------------------------------------------------
## Method `Kibior$sum`
## ------------------------------------------------

## Not run: 
# sum of "sw" column "height"
kc$sum("sw", "height")
# if pattern
kc$sum("s*", "height")
# multiple indices, multiple columns
kc$sum(c("sw", "sw2"), c("height", "mass"), query = "homeworld:naboo")

## End(Not run)


## ------------------------------------------------
## Method `Kibior$stats`
## ------------------------------------------------

## Not run: 
# Stats of "sw" column "height"
kc$stats("sw", "height")
# if pattern
kc$stats("s*", "height")
# multiple indices and sigma definition
kc$stats(c("sw", "sw2"), "height", sigma = 2.5)
# multiple indices, multiple columns
kc$stats(c("sw", "sw2"), c("height", "mass"), query = "homeworld:naboo")

## End(Not run)


## ------------------------------------------------
## Method `Kibior$percentiles`
## ------------------------------------------------

## Not run: 
# percentiles of "sw" column "height", default is with q1, q2 and q3
kc$percentiles("sw", "height")
# if pattern
kc$percentiles("s*", "height")
# defining percents to get
kc$percentiles("s*", "height", percents = c(20, 25))
# multiple indices, multiple columns
kc$percentiles(c("sw", "sw2"), c("height", "mass"), query = "homeworld:naboo")

## End(Not run)


## ------------------------------------------------
## Method `Kibior$q1`
## ------------------------------------------------

## Not run: 
# Q1 of "sw" column "height"
kc$q1("sw", "height")
# if pattern
kc$q1("s*", "height")
# multiple indices, multiple columns
kc$q1(c("sw", "sw2"), c("height", "mass"), query = "homeworld:naboo")

## End(Not run)


## ------------------------------------------------
## Method `Kibior$q2`
## ------------------------------------------------

## Not run: 
# Q2 of "sw" column "height"
kc$q2("sw", "height")
# if pattern
kc$q2("s*", "height")
# multiple indices, multiple columns
kc$q2(c("sw", "sw2"), c("height", "mass"), query = "homeworld:naboo")

## End(Not run)


## ------------------------------------------------
## Method `Kibior$median`
## ------------------------------------------------

## Not run: 
# median of "sw" column "height"
kc$median("sw", "height")
# if pattern
kc$median("s*", "height")
# multiple indices, multiple columns
kc$median(c("sw", "sw2"), c("height", "mass"), query = "homeworld:naboo")

## End(Not run)


## ------------------------------------------------
## Method `Kibior$q3`
## ------------------------------------------------

## Not run: 
# Q3 of "sw" column "height"
kc$q3("sw", "height")
# if pattern
kc$q3("s*", "height")
# multiple indices, multiple columns
kc$q3(c("sw", "sw2"), c("height", "mass"), query = "homeworld:naboo")

## End(Not run)


## ------------------------------------------------
## Method `Kibior$summary`
## ------------------------------------------------

## Not run: 
# summary of "sw" column "height"
kc$summary("sw", "height")
# if pattern
kc$summary("s*", "height")
# multiple indices, multiple columns
kc$summary(c("sw", "sw2"), c("height", "mass"), query = "homeworld:naboo")

## End(Not run)


## ------------------------------------------------
## Method `Kibior$keys`
## ------------------------------------------------

## Not run: 
kc$keys("sw", "name")
kc$keys("sw", "eye_color")

## End(Not run)


## ------------------------------------------------
## Method `Kibior$bam_to_tibble`
## ------------------------------------------------

## Not run: 
dd_bai <- system.file("extdata", "test.bam.bai", package = "kibior")
bam_param <- Rsamtools::ScanBamParam(what = c("pos", "qwidth"))
bam_data <- Rsamtools::scanBam(dd_bai, param = bam_param)
kc$bam_to_tibble(bam_data)

## End(Not run)


## ------------------------------------------------
## Method `Kibior$soft_cast`
## ------------------------------------------------

## Not run: 
kc$soft_cast(datasets::iris)

## End(Not run)


## ------------------------------------------------
## Method `Kibior$get_resource`
## ------------------------------------------------

## Not run: 
kc$get_resource(system.file("R", "kibior.R", package = "kibior"))
kc$get_resource("https://ftp.ncbi.nlm.nih.gov/entrez/README")

## End(Not run)


## ------------------------------------------------
## Method `Kibior$export`
## ------------------------------------------------

## Not run: 
f <- tempfile(fileext=".csv")
# export and overwrite last file with the same data from Elasticsearch
kc$export(data = "sw", filepath = f)
# export from in-memory data to a file
kc$export(data = dplyr::starwars, filepath = f, force = TRUE)

## End(Not run)


## ------------------------------------------------
## Method `Kibior$import_tabular`
## ------------------------------------------------

## Not run: 
f <- tempfile(fileext = ".csv")
rio::export(ggplot2::diamonds, f)
# import to in-memory variable
kc$import_tabular(filepath = f)
# import raw data
kc$import_tabular(filepath = f, to_tibble = FALSE)

## End(Not run)


## ------------------------------------------------
## Method `Kibior$import_features`
## ------------------------------------------------

## Not run: 
# get sample files
f_gff <- system.file("extdata", "chr_y.gff3.gz", package = "kibior")
f_bed <- system.file("extdata", "cpg.bed", package = "kibior")
# import to in-memory variable
kc$import_features(filepath = f_bed)
kc$import_features(filepath = f_gff)
# import raw data
kc$import_features(filepath = f_bed, to_tibble = FALSE)
kc$import_features(filepath = f_gff, to_tibble = FALSE)

## End(Not run)


## ------------------------------------------------
## Method `Kibior$import_alignments`
## ------------------------------------------------

## Not run: 
# get sample file
f_bai <- system.file("extdata", "test.bam.bai", package = "kibior")
# import to in-memory variable
kc$import_alignments(filepath = f_bai)
# import raw data
kc$import_alignments(filepath = f_bai, to_tibble = FALSE)

## End(Not run)


## ------------------------------------------------
## Method `Kibior$import_json`
## ------------------------------------------------

## Not run: 
# get sample file
f_json <- system.file("extdata", "storms100.json", package = "kibior")
# import to in-memory variable
kc$import_json(f_json)
# import raw data
kc$import_json(f_json, to_tibble = FALSE)

## End(Not run)


## ------------------------------------------------
## Method `Kibior$import_sequences`
## ------------------------------------------------

## Not run: 
# get sample file
f_dna <- system.file("extdata", "dna_human_y.fa.gz", package = "kibior")
f_rna <- system.file("extdata", "ncrna_mus_musculus.fa.gz", package = "kibior")
f_aa <- system.file("extdata", "pep_mus_spretus.fa.gz", package = "kibior")
# import to in-memory variable
kc$import_sequences(filepath = f_dna, fasta_type = "dna")
# import raw data
kc$import_sequences(filepath = f_rna, to_tibble = FALSE, fasta_type = "rna")
# import auto
kc$import_sequences(filepath = f_aa)

## End(Not run)


## ------------------------------------------------
## Method `Kibior$guess_import`
## ------------------------------------------------

## Not run: 
# get sample file
f_dna <- system.file("extdata", "dna_human_y.fa.gz", package = "kibior")
f_rna <- system.file("extdata", "ncrna_mus_musculus.fa.gz", package = "kibior")
f_aa <- system.file("extdata", "pep_mus_spretus.fa.gz", package = "kibior")
f_bai <- system.file("extdata", "test.bam.bai", package = "kibior")
f_gff <- system.file("extdata", "chr_y.gff3.gz", package = "kibior")
f_bed <- system.file("extdata", "cpg.bed", package = "kibior")
# import 
kc$guess_import(f_dna)
kc$guess_import(f_rna)
kc$guess_import(f_aa)
kc$guess_import(f_bai)
kc$guess_import(f_gff)
kc$guess_import(f_bed)

## End(Not run)


## ------------------------------------------------
## Method `Kibior$import`
## ------------------------------------------------

## Not run: 
# get sample file
f_aa <- system.file("extdata", "pep_mus_spretus.fa.gz", package = "kibior")
f_gff <- system.file("extdata", "chr_y.gff3.gz", package = "kibior")
f_bai <- system.file("extdata", "test.bam.bai", package = "kibior")
# import 
kc$import(filepath = f_aa)
# import to Elasticsearch index ("sw_from_file") if not exists
kc$import(filepath = f_bai, push_index = "sw_from_file")
# import to index by recreating it, then pull indexed data
kc$import(filepath = f_gff, push_index = "sw_from_file",
 push_mode = "recreate")

## End(Not run)


## ------------------------------------------------
## Method `Kibior$push`
## ------------------------------------------------

## Not run: 
# erase the last push data by recreating the index and re-pushing data
kc$push(dplyr::starwars, index_name = "sw", mode = "recreate")
# characters names are unique, can be used as ID
kc$push(dplyr::starwars, index_name = "sw", mode = "recreate", id_col = "name")
# a bit more complicated: update some data of the dataset "starwars"
# 38 records on 87 filtered
some_new_data <- dplyr::filter(dplyr::starwars, height > 180)
# make them all "gender <- female"
some_new_data["gender"] <- "female"
# update that apply, based on cahracter names to match the right record
kc$push(some_new_data, "sw", mode = "update", id_col = "name")
# view result by querying
kc$pull("sw", query = "height:>180", columns = c("name", "gender"))

## End(Not run)


## ------------------------------------------------
## Method `Kibior$pull`
## ------------------------------------------------

## Not run: 
# push some data sample
kc$push(dplyr::storms, "storms")
# get the whole "sw" index
kc$pull("sw")
# get the whole "sw" index with all metadata
kc$pull("sw", keep_metadata = TRUE)
# get only "name" and "status" columns of indices starting with "s"
# columns not found will be ignored
kc$pull("s*", columns = c("name", "status"))
# limit the size of the result to 10
kc$pull("storms", max_size = 10, bulk_size = 10)
# use Elasticsearch query syntax to select and filter on all indices, for all data
# Here, we want to search for all records taht match the conditions:
# field "height" is strictly more than 180 AND field homeworld is "Tatooine" OR "Naboo"
r <- kc$pull("sw", query = "height:>180 && homeworld:(Tatooine || Naboo)")
# it can be used in conjunction with `columns` to select only columns that matter
r <- kc$pull("sw", query = "height:>180 && homeworld:(Tatooine || Naboo)", columns = 
 c("name", "hair_color", "homeworld"))

## End(Not run)


## ------------------------------------------------
## Method `Kibior$move`
## ------------------------------------------------

## Not run: 
kc$push(dplyr::starwars, "sw", mode = "recreate")
# move data from an index to another (change name, same instance)
r <- kc$move(from_index = "sw", to_index = "sw_new")
kc$pull("sw_new")
kc$list()

## End(Not run) 


## ------------------------------------------------
## Method `Kibior$copy`
## ------------------------------------------------

## Not run: 
# copy data from one index to another (same instance)
r <- kc$copy(from_index = "sw_new", to_index = "sw")
kc$pull(c("sw", "sw_new"))
kc$list()

## End(Not run) 


## ------------------------------------------------
## Method `Kibior$match`
## ------------------------------------------------

## Not run: 
# search "sw" index name
kc$match("sw")
# search all starting with an "s"
kc$match("s*")
# get all index name, identical to `$list()`
kc$match("*")
# search multiple names 
kc$match(c("sw", "sw_new", "nope"))
# search multiple names with pattern
kc$match(c("s*", "nope"))

## End(Not run)


## ------------------------------------------------
## Method `Kibior$search`
## ------------------------------------------------

## Not run: 
# search "sw" index, head mode on
kc$search("sw")
# search "sw" index with all metadata, head mode on
kc$search("sw", keep_metadata = TRUE)
# get only "name" field of the head of indices starting with "s"
# if an index does not have the "name" field, it will be empty
kc$search("s*", columns = "name")
# limit the size of the result to 50 to the whole index
kc$search("storms", max_size = 50, bulk_size = 50, head = FALSE)
# use Elasticsearch query syntax to select and filter on all indices, for all data
# Here, we want to search for all records taht match the conditions:
# field "height" is strictly more than 180 AND field homeworld is "Tatooine" OR "Naboo"
kc$search("*", query = "height:>180 && homeworld:(Tatooine || Naboo)")
# it can be used in conjunction with `columns` to select only columns that matter
kc$search("*", query = "height:>180 && homeworld:(Tatooine || Naboo)", columns = 
 c("name", "hair_color", "homeworld"))

## End(Not run)


## ------------------------------------------------
## Method `Kibior$inner_join`
## ------------------------------------------------

## Not run: 
# some data for joins examples
kc$push(ggplot2::diamonds, "diamonds")
# prepare join datasets, only big the biggest diamonds are selected (9)
sup_carat <- dplyr::filter(ggplot2::diamonds, carat > 3.5)
r <- kc$push(sup_carat, "diamonds_superior")
# execute a inner_join with one index and one in-memory dataset
kc$inner_join(ggplot2::diamonds, "diamonds_superior")
# execute a inner_join with one index queried, and one in-memory dataset
kc$inner_join(ggplot2::diamonds, "diamonds", right_query 
 = "carat:>3.5")

## End(Not run)


## ------------------------------------------------
## Method `Kibior$full_join`
## ------------------------------------------------

## Not run: 
# prepare join datasets, fair cuts 
fair_cut <- dplyr::filter(ggplot2::diamonds, cut == "Fair")  # 1605 lines
sup_carat <- kc$pull("diamonds_superior")$diamonds_superior
# execute a full_join with one index and one in-memory dataset
kc$full_join(fair_cut, "diamonds_superior")
# execute a full_join with one index queried, and one in-memory dataset
kc$full_join(sup_carat, "diamonds", right_query = "cut:fair")

## End(Not run)


## ------------------------------------------------
## Method `Kibior$left_join`
## ------------------------------------------------

## Not run: 
# prepare join datasets, fair cuts 
fair_cut <- dplyr::filter(ggplot2::diamonds, cut == "Fair")  # 1605 lines
sup_carat <- kc$pull("diamonds_superior")$diamonds_superior
# execute a left_join with one index and one in-memory dataset
kc$left_join(fair_cut, "diamonds_superior")
# execute a left_join with one index queried, and one in-memory dataset
kc$left_join(sup_carat, "diamonds", right_query 
 = "cut:fair")

## End(Not run)


## ------------------------------------------------
## Method `Kibior$right_join`
## ------------------------------------------------

## Not run: 
# prepare join datasets, fair cuts 
fair_cut <- dplyr::filter(ggplot2::diamonds, cut == "Fair")  # 1605 lines
sup_carat <- kc$pull("diamonds_superior")$diamonds_superior
# execute a right_join with one index and one in-memory dataset
kc$right_join(fair_cut, "diamonds_superior")
# execute a right_join with one index queried, and one in-memory dataset
kc$right_join(sup_carat, "diamonds", right_query 
 = "cut:fair")

## End(Not run)


## ------------------------------------------------
## Method `Kibior$semi_join`
## ------------------------------------------------

## Not run: 
# prepare join datasets, fair cuts 
fair_cut <- dplyr::filter(ggplot2::diamonds, cut == "Fair")  # 1605 lines
sup_carat <- kc$pull("diamonds_superior")$diamonds_superior
# execute a semi_join with one index and one in-memory dataset
kc$semi_join(fair_cut, "diamonds_superior")
# execute a semi_join with one index queried, and one in-memory dataset
kc$semi_join(sup_carat, "diamonds", right_query 
 = "cut:fair")

## End(Not run)


## ------------------------------------------------
## Method `Kibior$anti_join`
## ------------------------------------------------

## Not run: 
# prepare join datasets, fair cuts 
fair_cut <- dplyr::filter(ggplot2::diamonds, cut == "Fair")  # 1605 lines
sup_carat <- kc$pull("diamonds_superior")$diamonds_superior
# execute a anti_join with one index and one in-memory dataset
kc$anti_join(fair_cut, "diamonds_superior")
# execute a anti_join with one index queried, and one in-memory dataset
kc$anti_join(sup_carat, "diamonds", right_query 
 = "cut:fair")
# 
# Do not mind this, removing example indices
elastic::index_delete(kc$connection, "*")
kc <- NULL

## End(Not run)

kibior documentation built on Jan. 28, 2021, 5:05 p.m.