Nothing
##########################################################################
# AS-CRMAv2 and Paired PSCBS
##########################################################################
future::plan("multisession")
library("aroma.affymetrix")
library("aroma.cn"); # PairedPscbsModel
verbose <- Arguments$getVerbose(-8, timestamp=TRUE)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Setup
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
dataSet <- "GSE34754"
chipType <- "Mapping250K_Nsp"
csR <- AffymetrixCelSet$byName(dataSet, chipType=chipType)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# AS-CRMAv2
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
dsNList <- doASCRMAv2(csR)
print(dsNList)
dsN <- exportAromaUnitPscnBinarySet(dsNList)
print(dsN)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Group samples by name and type
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# AD HOC: For now, just hardwire the path.
path <- file.path("testScripts/complete/dataSets", dataSet)
db <- TabularTextFile(sprintf("%s,samples.txt", dataSet), path=path)
setColumnNamesTranslator(db, function(names, ...) {
names <- gsub("id", "fixed", names)
names <- gsub("fullname", "replacement", names)
names
})
df <- readDataFrame(db, colClasses=c("*"="character"))
setFullNamesTranslator(dsN, df)
# Identify unique sample names
sampleNames <- unique(getNames(dsN))
dsList <- lapply(sampleNames, FUN=function(sampleName) {
ds <- dsN[sampleName]
lapply(c(T="T", N="N"), FUN=function(type) {
ds[sapply(ds, hasTag, type)]
})
})
names(dsList) <- sampleNames
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Extract tumor-normal pairs
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
R <- 5; # Number of replicates
dsList2 <- list()
for (key in names(dsList)) {
dsListKK <- dsList[[key]]
dsT <- dsListKK$T
dsN <- dsListKK$N
# (a) Replicated tumor vs same normal
dsTa <- dsT[1:min(length(dsT),R)]
dsNa <- dsN[rep(1L, times=length(dsTa))]
# (b) Same tumor vs replicated normals
dsNb <- dsN[1:min(length(dsN),R)]
dsTb <- dsT[rep(1L, times=length(dsNb))]
# (c) Merge
dsT <- append(dsTa, dsTb)
dsN <- append(dsNa, dsNb)
# (d) Drop duplicated tumor-normal pairs
nT <- getFullNames(dsT)
nN <- getFullNames(dsN)
nP <- paste(nT, nN, sep="_vs_")
dups <- duplicated(nP)
dsT <- dsT[!dups]
dsN <- dsN[!dups]
stopifnot(length(dsT) == length(dsN))
dsList2[[key]] <- list(T=dsT, N=dsN)
} # for kk ...)
dsT <- Reduce(append, lapply(dsList2, FUN=function(x) x$T))
dsN <- Reduce(append, lapply(dsList2, FUN=function(x) x$N))
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Segment tumor-normal pairs
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
sm <- PairedPscbsModel(dsT=dsT, dsN=dsN, gapMinLength=2e6)
print(sm)
res <- fit(sm, verbose=verbose)
print(res)
sms <- getOutputDataSet(sm)
print(sms)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Call segments to be in ROH, AB and LOH.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
## caller <- PairedPscbsCaller(sms)
## print(caller)
## sms <- process(caller, verbose=verbose)
## print(sms)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Generate report (just to check)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
setOption("PSCBS::reports/pscnSegmentationTransitions", TRUE)
# Generate reports for tumor-normal pairs
for (ii in 1:min(length(sms),5)) {
df <- sms[[ii]]
fit <- loadObject(df)
sampleName <- getFullName(df)
pathname <- report(fit, sampleName=sampleName, studyName=getFullName(dsT), verbose=verbose)
print(pathname)
} # for (ii ...)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.