Nothing
getCutoff <- function(object, mzSpacing = 2, verbose = FALSE) {
if(verbose) {
message("[getDensityCutoff] Get density cutoff")
}
stopifnot(is(object, "CMSproc"))
ptime1 <- proc.time()
bgcorrDT <- .bgcorrDT(object)
densmat <- densityEstimate(object)
mzregions <- seq(.minMZ(object), .maxMZ(object), by = mzSpacing)
setkey(bgcorrDT, mz)
densmatMzs <- as.numeric(rownames(densmat))
densmatScans <- as.numeric(colnames(densmat))
## For each M/Z region, find the data point with the highest intensity
## Find the peak region corrresponding to this data point
## Get the density estimate values in this region
dlist <- lapply(seq_len(length(mzregions)-1), function(i) {
## Get the point with the highest intensity in this region
mzseq <- seq(mzregions[i]*1e5, mzregions[i+1]*1e5-1)
subdt <- bgcorrDT[.(mzseq), nomatch = 0]
if (nrow(subdt)==0)
return(c())
whm <- which.max(subdt[,intensity])
## Define a small region about this point in which to roughly define a peak area
scanwindow <- c(floor(subdt[whm,scan]-5), ceiling(subdt[whm,scan]+5))
scan <- subdt[whm,scan]
mz <- subdt[whm,mz]/1e5
mzwindow <- c(mz-(mz*30/1e6), mz+(mz*30/1e6))
mzseq <- seq(as.integer(mzwindow[1]*1e5), as.integer(mzwindow[2]*1e5))
subdt <- bgcorrDT[.(mzseq), nomatch = 0][scan >= scanwindow[1] & scan <= scanwindow[2]]
## Skip if number of points in region isn't >= number of samples
if (nrow(subdt) < length(.sampleNumber(object)))
return(c())
## Get the M/Z range of this rough "peak"
dens <- density(subdt[,mz]/1e5)
maxIndex <- which.max(dens$y)
left <- maxIndex - which.max(dens$y[maxIndex:1] < max(dens$y)*0.25) + 1
right <- maxIndex + which.max(dens$y[maxIndex:length(dens$y)] < max(dens$y)*0.25) - 1
mzwindow <- dens$x[c(left, right)]
densmatRows <- which.min(abs(densmatMzs-mzwindow[1])):which.min(abs(densmatMzs-mzwindow[2]))
## Get the scan range of this rough "peak" (left, right)
mzseq <- seq(as.integer(mzwindow[1]*1e5), as.integer(mzwindow[2]*1e5))
subdt <- bgcorrDT[.(mzseq), nomatch = 0]
subdt <- subdt[, .N, by = scan]
numperscan <- rep(0, .maxScan(object))
numperscan[subdt[,scan]] <- subdt[,N]
names(numperscan) <- 1:.maxScan(object)
numperscan <- numperscan[as.character(densmatScans)]
scanIndex <- which.min(abs(densmatScans-scan))
if (sum(numperscan[scanIndex:1]==0)==0) {
left <- 1
} else {
left <- scanIndex-which.max(numperscan[scanIndex:1]==0)+1
}
if (sum(numperscan[scanIndex:length(densmatScans)]==0)==0) {
right <- length(densmatScans)
} else {
right <- scanIndex+which.max(numperscan[scanIndex:length(densmatScans)]==0)-1
}
return(as.numeric(densmat[densmatRows,left:right]))
})
## Use features of the distribution of these density values to select a cutoff
## Obtain quantiles of these density values in the different regions
## Look at the modes of these distributions - for most quantiles, the mode is near 0
## Choose the cutoff as the first mode that "jumps" away from zero
qs <- seq(0.001,0.999,0.001)
modes <- sapply(qs, function(qu) {
quants <- sapply(dlist, quantile, qu)
d <- density(quants, from = min(quants, na.rm = TRUE), na.rm = TRUE)
d$x[which.max(d$y)]
})
sortedModes <- sort(modes)
r <- tail(sortedModes, -1)/head(sortedModes, -1)
cp <- which.max(r > 10)+1
cutoff <- sortedModes[cp]
ptime2 <- proc.time()
stime <- (ptime2 - ptime1)[3]
if(verbose) {
message(sprintf("[getDensityCutoff] Get density cutoff .. done in %.1f secs.", stime))
}
return(cutoff)
}
computePeakBounds <- function(densmat, dcutoff, verbose = FALSE) {
if(verbose) {
message("[computePeakBounds] Computing peak bounds")
}
ptime1 <- proc.time()
## Get grid ticks
mzs <- as.numeric(rownames(densmat))
mzs <- c(mzs, tail(mzs, 1)+(mzs[2]-mzs[1]))
scans <- as.numeric(colnames(densmat))
## Connected-components labeling
bool <- densmat > dcutoff
blobs <- bwlabel(bool)
wh <- which(blobs!=0, arr.ind = TRUE)
dtblobs <- data.table(row = wh[,1], col = scans[wh[,2]], peaknum = blobs[wh])
setkey(dtblobs, peaknum)
blobsDT <- dtblobs[, .(mzmin = mzs[min(row)], mzmax = mzs[max(row)+1], scanmin = min(col), scanmax = max(col)), by = peaknum]
## Make matrix of blob information
blobs <- cbind(blobsDT[,mzmin], blobsDT[,mzmax], blobsDT[,scanmin], blobsDT[,scanmax], blobsDT[,peaknum])
colnames(blobs) <- c("mzmin", "mzmax", "scanmin", "scanmax", "peaknum")
ptime2 <- proc.time()
stime <- (ptime2 - ptime1)[3]
if(verbose) {
message(sprintf("[computePeakBounds] Computing peak bounds .. done in %.1f secs.", stime))
}
return(blobs)
}
getEICsAndQuantify <- function(object, peakBounds, verbose = FALSE) {
if(verbose) {
message("[getEICsAndQuantify] compute EICs")
}
stopifnot(is(object, "CMSproc"))
rawDT <- .rawDT(object)
setkey(rawDT, mz, scan)
ptime1 <- proc.time()
eicsRaw <- lapply(seq_len(nrow(peakBounds)), function(i) {
mzseq <- seq(as.integer(peakBounds[i,"mzmin"]*1e5), as.integer(peakBounds[i,"mzmax"]*1e5))
dt <- rawDT[.(mzseq), nomatch = 0]
dt <- dt[, eic := log2(max(intensity)+1), by = .(scan, sample)]
dup <- duplicated(dt[,.(scan,sample)])
dt <- dt[!dup]
eics <- lapply(.sampleNumber(object), function(s) {
subdt <- dt[sample==s]
if (nrow(subdt) < 2) {
return(approxfun(x = 1:2, y = rep(0,2), rule = 2))
} else {
return(approxfun(x = subdt[,scan], y = subdt[,eic], rule = 2))
}
})
return(eics)
})
ptime2 <- proc.time()
stime <- (ptime2 - ptime1)[3]
if(verbose) {
message(sprintf(".. done in %.1f secs.", stime))
message("[getEICsAndQuantify] quantify")
}
scanstep <- 0.01
scanseq <- seq(0, .maxScan(object), scanstep)
ptime1 <- proc.time()
quantmat <- do.call(rbind, lapply(seq_along(eicsRaw), function(i) {
wh <- which.min(abs(scanseq-peakBounds[i,"scanmin"])):which.min(abs(scanseq-peakBounds[i,"scanmax"]))
sapply(eicsRaw[[i]], function(eic) {
f <- (2^eic(scanseq))-1
return(sum(f[wh])*scanstep)
})
}))
ptime2 <- proc.time()
stime <- (ptime2 - ptime1)[3]
if(verbose) {
message(sprintf("[getEICsAndQuantify] .. done in %.1f secs.", stime))
}
return(quantmat)
}
slicepi <- function(object, cutoff = NULL, verbose = TRUE) {
## Set verbosity options
subverbose <- max(as.integer(verbose) - 1L, 0)
metadata <- list()
## If a cutoff is not supplied, compute it
if (is.null(cutoff)) {
if(verbose) {
message("[slicepi] Computing cutoff")
}
cutoff <- getCutoff(object = object, mzSpacing = 2, verbose = subverbose)
## Get density quantiles and choose the higher of the two
qcutoff <- which.min(abs(cutoff-densityQuantiles(object)))
qs <- seq(0.001,0.999,0.001)
qref <- which.min(abs(qs-0.99))
metadata[["densityCutoff"]] <- max(cutoff, densityQuantiles(object)[qref])
} else {
metadata[["densityCutoff"]] <- cutoff
}
metadata[["densityQuantiles"]] <- densityQuantiles(object)
if(verbose) {
message("[slicepi] Computing peak bounds")
}
peakBounds <- computePeakBounds(densmat = densityEstimate(object), dcutoff = metadata[["densityCutoff"]], verbose = subverbose)
## Get EICs and quantifications
if(verbose) {
message("[slicepi] Quantifying peaks")
}
peakQuants <- getEICsAndQuantify(object = object, peakBounds = peakBounds, verbose = subverbose)
## Create SummarizedExperiment container
CMSslice(assays = SimpleList(peakQuants = peakQuants),
rowData = DataFrame(peakBounds),
colData = colData(object),
metadata = metadata,
mzParams = .mzParams(object))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.