R/functions.R

Defines functions joinExons readCoverageFromBigWig

#Helper function to make wiggle plots

readCoverageFromBigWig <- function(bigwig_path, gene_range){
  #Read coverage over a region from a bigWig file
  sel = rtracklayer::BigWigSelection(gene_range)
  coverage_ranges = rtracklayer::import.bw(bigwig_path, selection = sel)
  GenomeInfoDb::seqlevels(coverage_ranges) = S4Vectors::as.vector.Rle(GenomicRanges::seqnames(gene_range), mode = "character")
  coverage_rle = GenomicRanges::coverage(coverage_ranges, weight = GenomicRanges::score(coverage_ranges))[[1]]
  coverage_rle = coverage_rle[(GenomicRanges::start(gene_range)):(GenomicRanges::end(gene_range))] #Keep the region of interest
}

joinExons <- function(exons) {
  #Join a list of exons into one GRanges object
  
  #Test that all transcripts are on the same chromosome
  chrs = purrr::map_chr(as.list(exons), ~GenomicRanges::seqnames(.)[1] %>% 
                              S4Vectors::as.vector.Rle(mode = "character"))
  if (!all(chrs == chrs[1])){
    stop("Some transcripts are on different chromosomes.")
  }
  
  #Join all exons together
  transcript_ids = names(exons)
  joint_exons = c()
  for(tx_id in transcript_ids){
    tx = exons[[tx_id]]
    if(length(joint_exons) == 0){
      joint_exons = tx
    }
    else{
      joint_exons = c(joint_exons, tx)
    }
  }
  joint_exons = GenomicRanges::reduce(joint_exons)
  return(joint_exons)
}

extractStrandsFromGrangesList <- function(granges_list){
  strands = purrr::map(as.list(granges_list), ~(GenomicRanges::strand(.) %>%
                         S4Vectors::as.vector.Rle(.,"character"))[1])
  return(unlist(strands))
}

prepareTranscriptAnnotations <- function(transcript_annotations){
  assertthat::assert_that(assertthat::has_name(transcript_annotations, "transcript_id"))
  assertthat::assert_that(assertthat::has_name(transcript_annotations, "strand"))
  
  
  #Make sure that the strand information is represented correctly
  transcript_annotations = dplyr::mutate(transcript_annotations,
                                         strand = ifelse(strand %in% c("+","*") | strand == 1, 1, -1))
  
  #Add transcript label
  if(assertthat::has_name(transcript_annotations, "gene_name")){
    transcript_annotations = dplyr::select_(transcript_annotations, "transcript_id", "gene_name", "strand") %>% 
      dplyr::mutate(transcript_label = ifelse(strand == 1, 
                    paste(paste(gene_name, transcript_id, sep = ":")," >",sep =""), 
                    paste("< ",paste(gene_name, transcript_id, sep = ":"),sep ="")))
  } else{
    transcript_annotations = dplyr::mutate(transcript_annotations, transcript_label = ifelse(strand == 1, 
                    paste(paste(transcript_id, sep = ":")," >",sep =""), 
                    paste("< ",paste(transcript_id, sep = ":"),sep =""))) 
  }
  return(transcript_annotations)
}

prepareTranscriptStructureForPlotting <- function(exon_ranges, cds_ranges, transcript_annotations){
  #Combine exon_ranges and cds_ranges into a single data.frame that also contains transcript rank
  
  #Convert exon ranges into data.frame and add transcript rank
  exons_df = purrr::map_df(exon_ranges, data.frame, .id = "transcript_id")
  exons_df = dplyr::mutate(exons_df, transcript_rank = as.numeric(factor(exons_df$transcript_id)), type = "")
  transcript_rank = unique(exons_df[,c("transcript_id", "transcript_rank", "type")])
  
  #Convert CDS ranges into a data.frame
  cds_df = purrr::map_df(cds_ranges, data.frame, .id = "transcript_id")
  cds_df = dplyr::left_join(cds_df, transcript_rank, by = "transcript_id") #Add matching transcript rank
  
  #Join exons and cdss together
  exons_df = dplyr::mutate(exons_df, feature_type = "exon")
  cds_df = dplyr::mutate(cds_df, feature_type = "cds")
  transcript_struct = rbind(exons_df, cds_df)

  #Add transcript label to transcript structure
  transcript_struct = dplyr::left_join(transcript_struct, transcript_annotations, by = "transcript_id")
  return(transcript_struct)
}

intronsFromJointExonRanges <- function(joint_exon_ranges, flanking_length){
  #Construct intron ranges from joint exon ranges
  introns = IRanges::gaps(joint_exon_ranges, 
                     start = min(IRanges::start(joint_exon_ranges)) - flanking_length[1], 
                     end = max(IRanges::end(joint_exon_ranges)) + flanking_length[2])
  return(introns)
}

# Find the start and end coordinates of the whole gene form joint exons. 
constructGeneRange <- function(joint_exon_ranges, flanking_length){
  gene_range = GenomicRanges::reduce(c(joint_exon_ranges, GenomicRanges::gaps(joint_exon_ranges, start = NA, end = NA)))
  GenomeInfoDb::seqlevels(gene_range) = S4Vectors::as.vector.Rle(GenomicRanges::seqnames(gene_range), mode = "character")[1]
  GenomicRanges::start(gene_range) = GenomicRanges::start(gene_range) - flanking_length[1]
  GenomicRanges::end(gene_range) = GenomicRanges::end(gene_range) + flanking_length[2]
  return(gene_range)
}

#' Paste two factors together and preserved their joint order.
#'
#' @param factor1 First factor
#' @param factor2 Second factor
#' 
#' @return Factors factor1 and factor2 pasted together.
pasteFactors <- function(factor1, factor2){
  #Extract levels
  levels1 = levels(factor1)
  levels2 = levels(factor2)
  
  #Construct joint levels
  new1 = rep(levels1, length(levels2))
  new2 = rep(levels2, each = length(levels1))
  new_levels = paste(new1, new2, sep = "_")
  
  new_factor = factor(paste(as.character(factor1), as.character(factor2), sep = "_"), levels = new_levels)
  return(new_factor)
}

# Calculate mean coverage within each track_id and colour_group
meanCoverage <- function(coverage_df){
  coverage_df = dplyr::group_by_(coverage_df, "track_id", "colour_group", "bins") %>% 
    dplyr::summarise_(.dots = stats::setNames(list(~mean(coverage)), c("coverage"))) %>%
    dplyr::ungroup() %>% # It's important to do ungroup before mutate, or you get unexpected factor results
    dplyr::mutate_(.dots = stats::setNames(list(~pasteFactors(as.factor(track_id), as.factor(colour_group))),c("sample_id")) ) #Construct a new sample id for mean vector
  
  return(coverage_df)
}

# Choose a subsample of points to make plotting faster
# Makes sure that intron-exon boundaries are well samples.
subsamplePoints <- function(tx_annotations, plot_fraction){
  #Define the start and end coorinates of the region
  region_start = min(IRanges::start(tx_annotations$new_introns))
  region_end = max(IRanges::end(tx_annotations$new_introns))
  region_length = region_end - region_start

  #Take a subsample of points that's easier to plot
  points = sample(region_length, floor(region_length*plot_fraction))
  #Subtract the start coordinate of the region
  exon_starts = unique(unlist(lapply(tx_annotations$exon_ranges, IRanges::start))) - (region_start -1)
  exon_ends = unique(unlist(lapply(tx_annotations$exon_ranges, IRanges::end))) - (region_start - 1)
  points = unique(sort(c(points, exon_starts, exon_ends, 
                         exon_starts -3, exon_starts +3, 
                         exon_ends + 3, exon_ends -3)))
  points = points[points >= 0]
  return(points)
}


#' Returns a three-colour palette suitable for visualising read coverage stratified by genotype
#'
#' @param old Return old colour palette (now deprecated).
#' @return Vector of three colours.
#' @export
#'
#' @examples
#' getGenotypePalette()
getGenotypePalette <- function(old = FALSE){
  if(old){
    c("#d7191c","#fdae61","#1a9641")
  } else{
    #Borrowed from Kumasaka, et al 2015
    c("#E9181D","#51BEEE","#18354B") 
  }
}

#Common theme for all data track plots
dataTrackTheme <- function(){
  theme = theme(axis.text.x = element_blank(), 
                axis.title.x = element_blank(), 
                axis.ticks.x = element_blank(),
                plot.margin=unit(c(0.1,1,0.1,1),"line"),
                legend.position="none",
                panel.grid.major = element_blank(),
                panel.grid.minor = element_blank(),
                strip.text.y = element_text(colour = "grey10"),
                strip.background = element_rect(fill = "grey85"))
  return(theme)
}

Try the wiggleplotr package in your browser

Any scripts or data that you put into this service are public.

wiggleplotr documentation built on Nov. 8, 2020, 5:39 p.m.