Nothing
#2013 - Federico Comoglio & Cem Sievers, D-BSSE, ETH Zurich
computePosterior <- function( tableCovCount ) {
matrixCovCount <- as.matrix( tableCovCount )
covVal <- as.numeric( rownames( matrixCovCount ) )
substVal <- as.numeric( colnames( matrixCovCount ) )
mu <- seq( 0.001, 0.999, by = 0.001 )
logmu <- log( mu )
log1mu <- log( 1 - mu )
a <- 1
b <- 1
nonZero <- which( matrixCovCount != 0, arr.ind = TRUE)
posterior <- apply( nonZero, 1, function( pair ) {
i <- pair[ 1 ]
j <- pair[ 2 ]
thisCov <- covVal[ i ]
thisSubst <- substVal[ j ]
l <- thisCov - thisSubst
logFact <- lgamma (a + thisSubst + b + l ) - lgamma( thisSubst + a ) - lgamma( l + b )
logPost <- logFact + ( a + thisSubst - 1 ) * logmu + ( b + l - 1 ) * log1mu
term <- exp( logPost )
factor <- matrixCovCount[ i, j ]
factor * term
} )
posterior <- rowSums( posterior )
posterior <- posterior / ( sum(posterior) * 0.001 )
return( posterior )
}
estimateP <- function( countTableSplit ) {
# wrapper to estimate posterior densities
#
# Args:
# countTableSplit: a GRanges object, corresponding to a count table where each substitution has a corresponding strand-specific coverage and a count value, as returned by the getFilteredSub function and as further split by the fitMixtureModel function
#
# Returns:
# a vector, with values of the estimated posterior density
#
# Error handling
# ...
emd <- elementMetadata( countTableSplit )
cov <- emd[, 'coverage']
count <- emd[, 'count']
tableCovCount <- table( cov, count )
posterior <- computePosterior( tableCovCount )
return( posterior )
}
#' Fit a non-parametric mixture model from all identified substitutions
#'
#' Estimates the two-component mixture model consisting of the mixing
#' coefficients and the density functions.
#'
#' @usage fitMixtureModel(countTable, substitution = "TC")
#' @param countTable A GRanges object, corresponding to a count table as
#' returned by the \link{getAllSub} function
#' @param substitution A character indicating which substitution is induced by
#' the experimental procedure (e.g. 4-SU treatment - a standard in PAR-CLIP
#' experiments - induces T to C transitions and hence substitution = 'TC' in
#' this case.)
#' @return A list containing: \item{l1}{The first mixing coefficient}
#' \item{l2}{The second mixing coefficient} \item{p}{The mixture model}
#' \item{p1}{The first component of the mixture} \item{p2}{The second component
#' of the mixture}
#' @author Federico Comoglio and Cem Sievers
#' @seealso \code{\link{getAllSub}} \code{\link{getExpInterval}}
#' @keywords core model
#' @examples
#'
#' \dontrun{
#' filename <- system.file( "extdata", "example.bam", package = "wavClusteR" )
#' example <- readSortedBam(filename = filename)
#' countTable <- getAllSub( example, minCov = 10, cores = 1 )
#'
#' fitMixtureModel( countTable, substitution = "TC" )
#' }
#'
#' #load and inspect the model
#' data( model )
#' str( model )
#'
#' #plot densities and estimate the relative substitution frequency support dominated by PAR-CLIP induction
#' getExpInterval( model, bayes = TRUE, plot = TRUE )
#'
#' @export fitMixtureModel
fitMixtureModel <- function( countTable, substitution = 'TC' ) {
# Error handling
# ...
#1-extract all substitutions and construct a summary table
subst <- elementMetadata( countTable )[ ,'substitutions' ]
substTable <- table( subst )
#2-identifies the entry in the summary table corresponding to the substitution to be considered
pos <- which( names( substTable ) == substitution )
#3-get counts for experimentally induced substitutions and estimate non-experimentally induced ones
expSub <- substTable[ pos ]
nonexpSub <- max( substTable[ -pos ] )
#4-estimate mixing coefficients
l2 <- ( expSub - nonexpSub ) / expSub
l1 <- 1 - l2
#5-split countTable by substitution. [[1]] is FALSE, [[2]] is true
countTableSplit <- split( countTable, subst == substitution)
#6-estimate model densities
message( 'Estimating model densities...' )
p1 <- estimateP( countTableSplit[[1]] )
p <- estimateP( countTableSplit[[2]] )
p2 <- (p - l1 * p1) / l2
p2[p2 < 0] <- 0
return( list(l1 = l1, l2 = l2, p = p, p1 = p1, p2 = p2) )
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.