Nothing
#' @include utils.R
.diffEndTest <- function(models, global = TRUE, pairwise = FALSE, l2fc = 0){
if (is(models, "list")) {
sce <- FALSE
} else if (is(models, "SingleCellExperiment")) {
sce <- TRUE
condPresent <- suppressWarnings({
!is.null(SummarizedExperiment::colData(models)$tradeSeq$conditions)
})
if (!condPresent) {
conditions <- NULL
nConditions <- 1
} else {
conditions <- SummarizedExperiment::colData(models)$tradeSeq$conditions
nConditions <- nlevels(conditions)
}
}
if (!sce) { # list output of fitGAM
modelTemp <- .getModelReference(models)
nCurves <- length(modelTemp$smooth)
} else if (sce) {
dm <- colData(models)$tradeSeq$dm # design matrix
nCurves <- length(grep(x = colnames(dm), pattern = "l[1-9]"))
nLineages <- length(grep(x = colnames(dm), pattern = "t[1-9]"))
}
if (nCurves == 1) stop("You cannot run this test with only one lineage.")
if (nCurves == 2 & pairwise == TRUE) {
message("Only two lineages; skipping pairwise comparison.")
pairwise <- FALSE
}
# get predictor matrix for every lineage.
if (!sce) { # list output of fitGAM
data <- modelTemp$model
for (jj in seq_len(nCurves)) {
df <- .getPredictEndPointDf(modelTemp$model, jj)
assign(paste0("X",jj),
predict(modelTemp, newdata = df, type = "lpmatrix"))
}
} else if (sce) {
# get lp matrix
slingshotColData <- colData(models)$slingshot
for (jj in seq_len(nLineages)) {
df <- .getPredictEndPointDf(dm, jj)
assign(paste0("X", jj),
predictGAM(lpmatrix = colData(models)$tradeSeq$X,
df = df,
pseudotime = slingshotColData[,grep(x = colnames(slingshotColData),
pattern = "pseudotime")],
conditions = conditions))
}
}
# construct pairwise contrast matrix
if (!sce) {
p <- length(stats::coef(modelTemp))
combs <- utils::combn(nCurves,m = 2)
} else if (sce) {
p <- ncol(colData(models)$tradeSeq$X)
combs <- utils::combn(nLineages, m = 2)
}
L <- matrix(0, nrow = p, ncol = ncol(combs))
colnames(L) <- apply(combs, 2, paste, collapse = "_")
for (jj in seq_len(ncol(combs))) {
curvesNow <- combs[,jj]
L[, jj] <- get(paste0("X", curvesNow[1])) - get(paste0("X", curvesNow[2]))
}
if (!sce) rm(modelTemp)
# perform global statistical test for every model
if (global) {
if (!sce) { #gam list output
waldResultsOmnibus <- lapply(models, function(m){
if (class(m)[1] == "try-error") return(c(NA, NA, NA, NA))
beta <- matrix(stats::coef(m), ncol = 1)
Sigma <- m$Vp
waldTestFC(beta, Sigma, L, l2fc)
})
} else if (sce) { #singleCellExperiment output
waldResultsOmnibus <- lapply(seq_len(nrow(models)), function(ii){
beta <- t(rowData(models)$tradeSeq$beta[[1]][ii,])
Sigma <- rowData(models)$tradeSeq$Sigma[[ii]]
if (any(is.na(beta))) return(c(NA,NA, NA))
waldTestFC(beta, Sigma, L, l2fc)
})
names(waldResultsOmnibus) <- rownames(models)
}
#process output.
waldResults <- do.call(rbind,waldResultsOmnibus)
colnames(waldResults) <- c("waldStat", "df", "pvalue")
waldResults <- as.data.frame(waldResults)
}
# perform pairwise comparisons
if (pairwise) {
if (!sce) { # gam list output
waldResultsPairwise <- lapply(models, function(m){
if (class(m)[1] == "try-error") {
return(matrix(NA, nrow = ncol(L), ncol = 4))
}
beta <- matrix(stats::coef(m), ncol = 1)
Sigma <- m$Vp
t(vapply(seq_len(ncol(L)), function(ii){
waldTestFC(beta, Sigma, L[, ii, drop = FALSE], l2fc)
}, FUN.VALUE = c(.1, 1, .1)))
})
} else if (sce) {
waldResultsPairwise <- lapply(seq_len(nrow(models)), function(ii){
beta <- t(rowData(models)$tradeSeq$beta[[1]][ii,])
Sigma <- rowData(models)$tradeSeq$Sigma[[ii]]
t(vapply(seq_len(ncol(L)), function(ll){
if (any(is.na(beta))) return(c(NA,NA, NA))
waldTestFC(beta, Sigma, L[, ll, drop = FALSE], l2fc)
}, FUN.VALUE = c(.1, 1, .1)))
})
names(waldResultsPairwise) <- rownames(models)
}
# clean pairwise results
contrastNames <- unlist(lapply(strsplit(colnames(L), split = "_"),
paste, collapse = "vs"))
colNames <- c(paste0("waldStat_",contrastNames),
paste0("df_",contrastNames),
paste0("pvalue_",contrastNames))
resMat <- do.call(rbind, lapply(waldResultsPairwise, c))
colnames(resMat) <- colNames
# order results by contrast
ll <- list()
for (jj in seq_len(ncol(L))) ll[[jj]] <- seq(jj,ncol(L)*3, by = ncol(L))
orderByContrast <- unlist(ll)
waldResAllPair <- resMat[,orderByContrast]
}
## get fold changes for output
if (!sce) {
fcAll <- lapply(models, function(m){
betam <- stats::coef(m)
fcAll <- .getFoldChanges(betam, L)
return(fcAll)
})
if (ncol(L) == 1) fcAll <- matrix(unlist(fcAll), ncol = 1)
if (ncol(L) > 1) fcAll <- do.call(rbind, fcAll)
colnames(fcAll) <- paste0("logFC",colnames(L))
} else if (sce) {
betaAll <- as.matrix(rowData(models)$tradeSeq$beta[[1]])
fcAll <- apply(betaAll,1,function(betam){
fcAll <- .getFoldChanges(betam, L)
})
if (ncol(L) == 1) fcAll <- matrix(fcAll, ncol = 1)
if (ncol(L) > 1) fcAll <- t(fcAll)
colnames(fcAll) <- paste0("logFC",colnames(L))
}
# return output
if (global == TRUE & pairwise == FALSE) return(cbind(waldResults, fcAll))
if (global == FALSE & pairwise == TRUE) return(cbind(waldResAllPair, fcAll))
if (global == TRUE & pairwise == TRUE) {
waldAll <- cbind(waldResults, waldResAllPair, fcAll)
return(waldAll)
}
}
#' @title Differential expression between end points of lineages.
#' @description Assess differential expression between the average expression at the
#' end points of lineages of a trajectory.
#'
#' @param models The fitted GAMs, typically the output from
#' \code{\link{fitGAM}}.
#' @param global If TRUE, test for all pairwise comparisons simultaneously.
#' @param pairwise If TRUE, test for all pairwise comparisons independently.
#' @param l2fc The log2 fold change threshold to test against. Note, that
#' this will affect both the global test and the pairwise comparisons.
#' @importFrom magrittr %>%
#' @examples
#' data(gamList, package = "tradeSeq")
#' diffEndTest(gamList, global = TRUE, pairwise = TRUE)
#' @details
#' The \code{l2fc} argument allows to test against a particular fold change
#' threshold. For example, if the interest lies in discovering genes that are
#' differentially expressed with an absolute log2 fold change cut off above 1,
#' i.e. a fold change of at least 2, then one can test for this by setting
#' \code{l2fc=1} as argument to the function.
#' @return A matrix with the wald statistic, the number of df and the p-value
#' associated with each gene for all the tests performed. Also, for each possible
#' pairwise comparision, the observed log fold changes. If the testing
#' procedure was unsuccessful, the procedure will return NA test statistics,
#' fold changes and p-values.
#' @export
#' @rdname diffEndTest
#' @importFrom methods is
#' @import SingleCellExperiment
setMethod(f = "diffEndTest",
signature = c(models = "SingleCellExperiment"),
definition = function(models,
global = TRUE,
pairwise = FALSE,
l2fc = 0){
res <- .diffEndTest(models = models,
global = global,
pairwise = pairwise,
l2fc = l2fc)
return(res)
}
)
#' @rdname diffEndTest
#' @export
setMethod(f = "diffEndTest",
signature = c(models = "list"),
definition = function(models,
global = TRUE,
pairwise = FALSE,
l2fc = 0){
res <- .diffEndTest(models = models,
global = global,
pairwise = pairwise,
l2fc = l2fc)
return(res)
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.