Nothing
kernCreate <- function(x, kernType, kernOptions=NULL) {
if ( is.list(x) ) {
dim <- array()
for ( i in 1:length(x) ) {
dim[i] <- dim(as.matrix(x[[i]]))[2]
if ( (dim[i] == 1) & (dim(as.matrix(x[[i]]))[1] == 1) )
dim[i] <- x[[i]]
}
} else {
dim <- dim(as.matrix(x))[2]
if ( (dim == 1) & (dim(as.matrix(x))[1] == 1) )
dim <- x
}
if ( is.list(kernType) && kernType$type == "parametric" ) {
kernOptions <- kernType$options
kernType <- kernType$realType
}
if ( is.list(kernType) && ("options" %in% names(kernType)) ) {
kernOptions <- kernType$options
}
if ( is.list(kernType) && ("complete" %in% names(kernType)) ) {
if ( kernType$complete == 1 ) {
kern <- kernType
}
} else if ( is.list(kernType) ) {
kern <- list(inputDimension=dim, type=kernType$type)
if (!is.null(kernOptions))
kern$options <- kernOptions
start <- 1
if ( kern$type == "multi" ) {
for ( i in start:length(kernType$comp) ) {
if ( is.list(kernType$comp) ) {
iType <- kernType$comp[[i]]
} else {
iType <- kernType$comp[i]
}
if ( is.list(x) ) {
kern$comp[[i-start+1]] <- kernCreate(x[[i-start+1]], iType)
kern$diagBlockDim[i-start+1] <- dim(as.array(x[[i-start+1]]))[1]
} else {
kern$comp[[i-start+1]] <- kernCreate(x, iType)
}
kern$comp[[i-start+1]]$index = array()
}
} else if ( kern$type %in% c("cmpnd", "tensor", "translate") ) {
for ( i in start:length(kernType$comp) ) {
if ( is.list(kernType$comp) ) {
iType <- kernType$comp[[i]]
} else {
iType <- kernType$comp[i]
}
kern$comp[[i-start+1]] <- kernCreate(x, iType)
kern$comp[[i-start+1]]$index = array()
}
} else if ( kern$type == "exp" ) {
## need double check
if ( start == length(kernType$comp) ) {
kern$argument <- kernCreate(x, kernType$comp[start])
} else {
kern$argument <- kernCreate(x, kernType$comp[start:length(kernType$comp)])
}
}
kern <- kernParamInit(kern)
} else {
kern <- list(type=kernType, inputDimension=dim)
if (!is.null(kernOptions))
kern$options <- kernOptions
kern <- kernParamInit(kern)
}
kern$Kstore <- matrix()
kern$diagK <- matrix()
if (!is.null(kernOptions) && "priors" %in% names(kernOptions)) {
kern$priors <- list()
for (k in seq_along(kernOptions$prior))
kern$priors[[k]] <- priorCreate(kernOptions$prior[[k]])
}
return (kern)
}
kernParamInit <- function (kern) {
funcName <- paste(kern$type, "KernParamInit", sep="")
kern$transforms = list()
func <- get(funcName, mode="function")
kern <- func(kern)
return (kern)
}
kernExtractParam <- function (kern, only.values=TRUE, untransformed.values=FALSE) {
funcName <- paste(kern$type, "KernExtractParam", sep="")
func <- get(funcName, mode="function")
params <- func(kern, only.values=only.values, untransformed.values=untransformed.values)
if ( any(is.nan(params)) )
warning("Parameter has gone to NaN.")
if ( "transforms" %in% names(kern) && (length(kern$transforms) > 0)
&& !untransformed.values )
for ( i in seq(along=kern$transforms) ) {
index <- kern$transforms[[i]]$index
funcName <- optimiDefaultConstraint(kern$transforms[[i]]$type)
func <- get(funcName$func, mode="function")
if (funcName$hasArgs)
params[index] <- func(params[index], "xtoa", kern$transformArgs[[i]])
else
params[index] <- func(params[index], "xtoa")
}
return (params)
}
kernExpandParam <- function (kern, params, untransformed.values=FALSE) {
if ( is.list(params) )
params <- params$values
if ( "transforms" %in% names(kern) && (length(kern$transforms) > 0)
&& !untransformed.values )
for ( i in seq(along=kern$transforms) ) {
index <- kern$transforms[[i]]$index
funcName <- optimiDefaultConstraint(kern$transforms[[i]]$type)
func <- get(funcName$func, mode="function")
if (funcName$hasArgs)
params[index] <- func(params[index], "atox", kern$transformArgs[[i]])
else
params[index] <- func(params[index], "atox")
}
funcName <- paste(kern$type, "KernExpandParam", sep="")
func <- get(funcName, mode="function")
kern <- func(kern, params)
return (kern)
}
kernDisplay <- function (kern, ...) {
funcName <- paste(kern$type, "KernDisplay", sep="")
if(exists(funcName, mode="function")) {
func <- get(funcName, mode="function")
return (func(kern, ...))
}
}
kernCompute <- function (kern, x, x2) {
funcName <- paste(kern$type, "KernCompute", sep="")
func <- get(funcName, mode="function")
if ( nargs() < 3 ) {
k <- func(kern, x)
} else {
k <- func(kern, x, x2)
}
return (k)
}
kernGradient <- function (kern, x, ...) {
funcName <- paste(kern$type, "KernGradient", sep="")
func <- get(funcName, mode="function")
g <- func(kern, x, ...)
factors <- .kernFactors(kern, "gradfact")
for (i in seq(along=factors))
g[factors[[i]]$index] <- g[factors[[i]]$index]*factors[[i]]$val
return (g)
}
kernPriorLogProb <- function (kern) {
L <- 0
if (kern$type %in% c('cmpnd', 'multi', 'tensor')) {
for (i in seq_along(kern$comp)) {
L <- L + kernPriorLogProb(kern$comp[[i]])
}
} else {
if ("priors" %in% names(kern)) {
func <- get(paste(kern$type, 'KernExtractParam', sep=''), mode='function')
params <- func(kern)
for (i in seq_along(kern$priors)) {
index <- kern$priors[[i]]$index
L <- L + priorLogProb(kern$priors[[i]], params[index])
}
}
}
return (L)
}
kernPriorGradient <- function (kern) {
g <- array(0, kern$nParams)
if (kern$type %in% c('cmpnd', 'multi', 'tensor')) {
startVal <- 1
endVal <- 0
for (i in seq_along(kern$comp)) {
endVal <- endVal + kern$comp[[i]]$nParams
g[startVal:endVal] <- kernPriorGradient(kern$comp[[i]])
startVal <- endVal + 1
}
g = (g %*% kern$paramGroups)[1,]
} else {
if ("priors" %in% names(kern)) {
func <- get(paste(kern$type, 'KernExtractParam', sep=''), mode='function')
params <- func(kern)
for (i in seq_along(kern$priors)) {
index <- kern$priors[[i]]$index
g[index] <- g[index] + priorGradient(kern$priors[[i]], params[index])
}
# Check if parameters are being optimised in a transformed space.
if ("transforms" %in% names(kern)) {
factors <- .kernFactors(kern, "gradfact")
for (i in seq_along(factors))
g[factors[[i]]$index] <- g[factors[[i]]$index]*factors[[i]]$val
}
}
}
return (g)
}
.kernFactors <- function (kern, factorType) {
factors <- list()
if ( length(kern$transforms) > 0 ) {
funcName <- paste(kern$type, "KernExtractParam", sep="")
func <- get(funcName, mode="function")
params <- func(kern)
for (i in seq(along=kern$transforms)) {
factors[[i]] <- list()
factors[[i]]$index <- kern$transforms[[i]]$index
funcName <- optimiDefaultConstraint(kern$transforms[[i]]$type)
func <- get(funcName$func, mode="function")
if (funcName$hasArgs)
factors[[i]]$val <- func(params[factors[[i]]$index], factorType, kern$transformArgs[[i]])
else
factors[[i]]$val <- func(params[factors[[i]]$index], factorType)
}
}
return (factors)
}
kernDiagCompute <- function (kern, x) {
funcName <- paste(kern$type, "KernDiagCompute", sep="")
func <- get(funcName, mode="function")
k <- func(kern, x)
return (k)
}
kernDiagGradX <- function (kern, x) {
funcName <- paste(kern$type, "KernDiagGradX", sep="")
func <- get(funcName, mode="function")
k <- func(kern, x)
return (k)
}
kernGradX <- function (kern, x, x2) {
funcName <- paste(kern$type, "KernGradX", sep="")
func <- get(funcName, mode="function")
k <- func(kern, x, x2)
return (k)
}
.kernTestCombinationFunction <- function (kern1, kern2) {
funcName <- paste(kern1$type, "X", kern2$type, "KernCompute", sep="")
if ( !exists(funcName, mode="function") ) {
return (FALSE)
} else {
return (TRUE)
}
}
multiKernParamInit <- function (kern) {
kern$nParams <- 0
kern$transforms <- list()
if ( !("comp" %in% names(kern)) )
kern$comp <- list()
kern$numBlocks <- length(kern$comp)
kern$isStationary <- TRUE
kern$block <- list()
for ( i in seq(along=kern$comp) ) {
if ( !kern$comp[[i]]$isStationary )
kern$isStationary <- FALSE
kern$comp[[i]] <- kernParamInit(kern$comp[[i]])
kern$nParams <- kern$nParams + kern$comp[[i]]$nParams
kern$comp[[i]]$index <- array()
kern$block[[i]] <- list(cross=array(), transpose=array())
for ( j in seq(length.out=i-1) ) {
if ( .kernTestCombinationFunction(kern$comp[[i]], kern$comp[[j]]) ) {
kern$block[[i]]$cross[j] <- paste(kern$comp[[i]]$type, "X", kern$comp[[j]]$type, sep="")
kern$block[[i]]$transpose[j] <- FALSE
} else {
if ( .kernTestCombinationFunction(kern$comp[[j]], kern$comp[[i]]) ) {
kern$block[[i]]$cross[j] <- paste(kern$comp[[j]]$type, "X", kern$comp[[i]]$type, sep="")
kern$block[[i]]$transpose[j] <- TRUE
} else {
warning(paste("No cross covariance found between", kern$comp[[i]]$type, "and", kern$comp[[j]]$type, "assuming independence."))
kern$block[[i]]$cross[j] <- ""
kern$block[[i]]$transpose[j] <- 0
}
}
}
}
kern$paramGroups <- diag(1, nrow=kern$nParams, ncol=kern$nParams)
kern$fixBlocks <- rep(FALSE, kern$numBlocks)
if ("options" %in% names(kern) && "fixedBlocks" %in% names(kern$options)
&& kern$options$fixedBlocks) {
kern$fixBlocks[kern$options$fixedBlocks] <- TRUE
kern$cache <- new.env(parent=emptyenv())
assign("cache", list(list(list())), envir=kern$cache)
}
return (kern)
}
multiKernExtractParam <- function (kern, only.values=TRUE,
untransformed.values=FALSE) {
return (cmpndKernExtractParam(kern, only.values=only.values,
untransformed.values=untransformed.values))
}
multiKernExpandParam <- function (kern, params) {
if ( is.list(params) )
params <- params$values
params <- params%*%t(kern$paramGroups)
startVal <- 1
endVal <- 0
for ( i in seq(along=kern$comp) ) {
endVal <- endVal+kern$comp[[i]]$nParams
kern$comp[[i]] <- kernExpandParam(kern$comp[[i]], params[startVal:endVal])
startVal <- endVal+1
}
return (kern)
}
multiKernDisplay <- function (kern, spaceNum=0) {
spacing = matrix("", spaceNum+1)
cat(spacing);
cat("Multiple output block kernel:\n")
for(i in seq(along=kern$comp)) {
cat(spacing)
cat("Block ", i, "\n", sep="")
kernDisplay(kern$comp[[i]], spaceNum)
}
}
multiKernCompute <- function (kern, x, x2=x) {
if ( is.list(x) ) {
if ( length(x) != kern$numBlocks )
stop ("Time information is not matched among blocks!")
dim1 <- array(0, dim=length(x))
dim2 <- array(0, dim=length(x))
for ( i in seq(length=kern$numBlocks) ) {
dim1[i] <- dim(as.array(x[[i]]))[1]
if ( nargs()>2 ) {
if ( length(x) != length(x2) )
stop ("Time information is not matched within the block!")
dim2[i] <- dim(as.array(x2[[i]]))[1]
} else {
dim2[i] <- dim1[i]
}
}
K <- matrix(0, sum(dim1), sum(dim2))
for ( i in seq(length=kern$numBlocks) ) {
startOne <- sum(dim1[seq(length.out=(i-1))])+1
endOne <- sum(dim1[seq(length.out=i)])
startThree <- sum(dim2[seq(length.out=(i-1))])+1
endThree <- sum(dim2[seq(length.out=i)])
if ( nargs()<3 ) {
K[startOne:endOne, startThree:endThree] <- .multiKernComputeBlock(kern, i, i, x[[i]])
} else {
K[startOne:endOne, startThree:endThree] <- .multiKernComputeBlock(kern, i, i, x[[i]], x2[[i]])
}
for ( j in seq(length.out=(i-1)) )
if ( !is.na(kern$block[[i]]$cross[j]) ) {
startTwo <- sum(dim2[seq(length.out=(j-1))])+1
endTwo <- sum(dim2[seq(length.out=j)])
if ( nargs()<3 ) {
K[startOne:endOne, startTwo:endTwo] <- .multiKernComputeBlock(kern, i, j, x[[i]], x[[j]])
K[startTwo:endTwo, startOne:endOne] <- t(K[startOne:endOne, startTwo:endTwo])
} else {
K[startOne:endOne, startTwo:endTwo] <- .multiKernComputeBlock(kern, i, j, x[[i]], x2[[j]])
startFour <- sum(dim1[seq(length.out=(j-1))])+1
endFour <- sum(dim1[seq(length.out=j)])
K[startFour:endFour, startThree:endThree] <- t(.multiKernComputeBlock(kern, j, i, x2[[i]], x[[j]]))
}
}
}
} else {
# non-cell part
dim1 = dim(as.array(x))[1]
if ( nargs() > 2 ) {
dim2 = dim(as.array(x2))[1]
} else {
dim2 = dim1;
}
K <- matrix(0, kern$numBlocks*dim1, kern$numBlocks*dim2)
for ( i in seq(length=kern$numBlocks) ) {
startOne <- (i-1)*dim1 + 1
endOne <- i*dim1
startThree <- (i-1)*dim2 + 1
endThree <- i*dim2
if ( nargs() < 3 ) {
K[startOne:endOne, startThree:endThree] <- .multiKernComputeBlock(kern, i, i, x)
} else {
K[startOne:endOne, startThree:endThree] <- .multiKernComputeBlock(kern, i, i, x, x2)
}
for ( j in seq(length=(i-1)) ) {
if ( !is.na(kern$block[[i]]$cross[j]) ) {
startTwo <- (j-1)*dim2 + 1
endTwo <- j*dim2
if ( nargs() < 3 ) {
K[startOne:endOne, startTwo:endTwo] <- .multiKernComputeBlock(kern, i, j, x)
} else {
K[startOne:endOne, startTwo:endTwo] <- .multiKernComputeBlock(kern, i, j, x, x2)
}
if ( nargs()< 3 ) {
K[startTwo:endTwo, startOne:endOne] <- t(K[startOne:endOne, startTwo:endTwo])
} else {
startFour <- (j-1)*dim1 + 1
endFour <- j*dim1
K[startFour:endFour, startThree:endThree] <- t(.multiKernComputeBlock(kern, j, i, x2, x))
}
}
}
}
}
return (K)
}
.multiKernComputeBlock <- function (kern, i, j, x1, x2=NULL) {
if ( i==j ) {
funcName <- paste(kern$comp[[i]]$type, "KernCompute", sep="")
transpose <- 0
arg1 <- kern$comp[[i]]
func <- get(funcName, mode="function")
if (kern$fixBlocks[[i]] && kern$fixBlocks[[j]]) {
K <- .multiKernCacheBlock(kern, func, i, j, arg1=arg1, x1=x1, x2=x2)
}
else {
if (is.null(x2))
K <- func(arg1, x1)
else
K <- func(arg1, x1, x2)
}
} else {
if ( j<i ) {
funcName <- paste(kern$block[[i]]$cross[j], "KernCompute", sep="")
transpose <- kern$block[[i]]$transpose[j]
} else {
funcName <- paste(kern$block[[j]]$cross[i], "KernCompute", sep="")
transpose <- !kern$block[[j]]$transpose[i]
}
if ( transpose ) {
arg1 <- kern$comp[[j]]
arg2 <- kern$comp[[i]]
} else {
arg1 <- kern$comp[[i]]
arg2 <- kern$comp[[j]]
}
func <- get(funcName, mode="function")
if (kern$fixBlocks[[i]] && kern$fixBlocks[[j]]) {
K <- .multiKernCacheBlock(kern, func, i, j, arg1=arg1, arg2=arg2, x1=x1, x2=x2)
}
else {
if (is.null(x2))
K <- func(arg1, arg2, x1)
else
K <- func(arg1, arg2, x1, x2)
}
}
return (K)
}
multiKernGradient <- function (kern, x, x2, covGrad) {
if ( is.list(x) ) {
if ( (nargs()>3) & !is.list(x2) )
stop("Time course information is not matched in List format.")
arg1 <- list()
arg2 <- list()
dim1 <- array()
dim2 <- array()
for ( i in seq(length=kern$numBlocks) ) {
dim1[i] <- dim(as.array(x[[i]]))[1]
arg1[[i]] <- x[[i]]
if ( nargs()>3 ) {
dim2[i] <- dim(as.array(x2[[i]]))[1]
arg2[[i]] <- x2[[i]]
} else {
dim2[i] <- dim1[i]
covGrad <- x2
arg2[[i]] <- arg1[[i]]
}
}
g <- array(0, dim(kern$paramGroups)[1])
startVal <- 1
endVal <- 0
for ( i in seq(length=kern$numBlocks) ) {
endVal <- endVal + kern$comp[[i]]$nParams
startOne <- sum(dim1[seq(length.out=(i-1))])+1
endOne <- sum(dim1[seq(length.out=i)])
startThree <- sum(dim2[seq(length.out=(i-1))])+1
endThree <- sum(dim2[seq(length.out=i)])
if ( nargs()>3 ) {
g[startVal:endVal] <- .multiKernGradientBlock(kern, arg1[[i]], arg2[[i]], covGrad[startOne:endOne, startThree:endThree], i, i)
} else {
g[startVal:endVal] <- .multiKernGradientBlock(kern, arg1[[i]], covGrad[startOne:endOne, startThree:endThree], i, i)
}
startVal2 <- 1
endVal2 <- 0
for ( j in seq(length.out=(i-1)) ) {
endVal2 <- endVal2 + kern$comp[[j]]$nParams
if ( !is.na(kern$block[[i]]$cross[j]) ) {
startTwo <- sum(dim2[seq(length.out=(j-1))])+1
endTwo <- sum(dim2[seq(length.out=j)])
gList <- .multiKernGradientBlock(kern, arg1[[i]], arg2[[j]], covGrad[startOne:endOne, startTwo:endTwo], i, j)
g[startVal:endVal] <- g[startVal:endVal] + 2*gList$g1
g[startVal2:endVal2] <- g[startVal2:endVal2] + 2*gList$g2
}
startVal2 <- endVal2 + 1
}
startVal <- endVal + 1
}
} else { # non-list x
dim1 <- dim(as.array(x))[1]
arg1 <- x
if ( nargs() > 3 ) {
dim2 <- dim(as.array(x2))[1]
arg2 <- x2
} else {
dim2 <- dim1
covGrad <- x2
arg2 <- arg1
}
g <- array(0, dim(kern$paramGroups)[1])
startVal <- 1
endVal <- 0
for ( i in seq(length=kern$numBlocks) ) {
endVal <- endVal + kern$comp[[i]]$nParams
startOne <- (i-1)*dim1 + 1
endOne <- i*dim1
if ( nargs() > 3 ) {
g[startVal:endVal] <- .multiKernGradientBlock(kern, arg1, arg2, covGrad[startOne:endOne, ((i-1)*dim2+1):(i*dim2)], i, i)
} else {
g[startVal:endVal] <- .multiKernGradientBlock(kern, arg1, covGrad[startOne:endOne, ((i-1)*dim2+1):(i*dim2)], i, i)
}
startVal2 <- 1
endVal2 <- 0
for ( j in seq(length=(i-1)) ) {
endVal2 <- endVal2 + kern$comp[[j]]$nParams
if ( !is.na(kern$block[[i]]$cross[j]) ) {
startTwo <- (j-1)*dim2 + 1
endTwo <- j*dim2
gList <- .multiKernGradientBlock(kern, arg1, arg2, covGrad[startOne:endOne, startTwo:endTwo], i, j)
g1 <- gList$g1
g2 <- gList$g2
if ( nargs() > 3 ) {
startThree <- (j-1)*dim1 + 1
endThree <- j*dim1
gList <- .multiKernGradientBlock(kern, arg2, arg1, t(covGrad[startThree:endThree, startTwo:endTwo]), j, i)
g3 <- gList$g1
g4 <- gList$g2
g[startVal:endVal] <- g[startVal:endVal] + g1 + g4
g[startVal2:endVal2] <- g[startVal2:endVal2] + g2 + g3
} else {
g[startVal:endVal] <- g[startVal:endVal] + 2*g1
g[startVal2:endVal2] <- g[startVal2:endVal2] + 2*g2
}
}
startVal2 <- endVal2 + 1
}
startVal <- endVal + 1
}
}
g <- (g %*% kern$paramGroups)[1,]
return (g)
}
.multiKernGradientBlock <- function (kern, x, x2, covGrad, i, j) {
if ( nargs()<6 ) {
j <- i
i <- covGrad
covGrad <- x2
x2 <- array()
}
if (kern$fixBlocks[[i]] && kern$fixBlocks[[j]]) {
if (i==j)
return (0)
else
return (list(g1=0, g2=0))
}
if ( i==j ) {
funcName <- paste(kern$comp[[i]]$type, "KernGradient", sep="")
transpose <- 0
arg1 <- kern$comp[[i]]
factors <- .kernFactors(kern$comp[[i]], "gradfact")
func <- get(funcName, mode="function")
if ( is.na(x2) ) {
g <- func(arg1, x, covGrad)
} else {
g <- func(arg1, x, x2, covGrad)
}
for (i in seq(along=factors))
g[factors[[i]]$index] <- g[factors[[i]]$index]*factors[[i]]$val
} else {
if ( j<i ) {
funcName <- paste(kern$block[[i]]$cross[j], "KernGradient", sep="")
transpose <- kern$block[[i]]$transpose[j]
} else {
funcName <- paste(kern$block[[j]]$cross[i], "KernGradient", sep="")
transpose <- kern$block[[j]]$transpose[i]
}
if ( transpose ) {
arg1 <- kern$comp[[j]]
factors1 <- .kernFactors(kern$comp[[j]], "gradfact")
arg2 <- kern$comp[[i]]
factors2 <- .kernFactors(kern$comp[[i]], "gradfact")
} else {
arg1 <- kern$comp[[i]]
factors1 <- .kernFactors(kern$comp[[i]], "gradfact")
arg2 <- kern$comp[[j]]
factors2 <- .kernFactors(kern$comp[[j]], "gradfact")
}
func <- get(funcName, mode="function")
if ( any(is.na(x2)) ) {
gList <- func(arg1, arg2, x, covGrad)
} else {
gList <- func(arg1, arg2, x, x2, covGrad)
}
g1 <- gList$g1
g2 <- gList$g2
for (i in seq(along=factors1))
g1[factors1[[i]]$index] <- g1[factors1[[i]]$index]*factors1[[i]]$val
for (i in seq(along=factors2))
g2[factors2[[i]]$index] <- g2[factors2[[i]]$index]*factors2[[i]]$val
if ( transpose ) {
g <- g2
g2 <- g1
g1 <- g
}
g <- list(g1=g1, g2=g2)
}
return (g)
}
multiKernDiagCompute <- function (kern, x) {
if ( is.list(x) ) {
xdim <- 0
for ( i in seq_along(x) )
xdim <- xdim + dim(as.array(x[[i]]))[1]
k <- matrix(0, xdim, 1)
startVal <- 1
endVal <- dim(as.array(x[[1]]))[1]
for ( i in seq(along=kern$comp) ) {
k[startVal:endVal] <- kernDiagCompute(kern$comp[[i]], x[[i]])
startVal <- endVal + 1
if ( (i+1)<=length(kern$comp) )
endVal <- endVal + dim(as.array(x[[i+1]]))[1]
}
} else {
xdim <- dim(as.array(x))[1]
k <- array(0, xdim*kern$numBlocks)
startVal <- 1
endVal <- xdim
for ( i in seq(along=kern$comp) ) {
k[startVal:endVal] <- kernDiagCompute(kern$comp[[i]], x)
startVal <- endVal + 1
endVal <- endVal + xdim
}
}
return (k)
}
.multiKernCacheBlock <- function(kern, fhandle, i, j, x1, x2=NULL, arg1, arg2=NULL) {
global_cache <- get("cache", envir = kern$cache)
if ((length(global_cache) >= i) && (length(global_cache[[i]]) >= j))
cache <- global_cache[[i]][[j]]
else
cache <- list()
key <- c(x1, x2)
for (k in seq(along=cache)) {
if (length(key) == length(cache[[k]]$key) && all(key == cache[[k]]$key)) {
#cat("multiKernCacheBlock: cache hit ", i, j, x1, x2, "\n")
return (cache[[k]]$value)
}
}
#cat("multiKernCacheBlock: cache miss ", i, j, x1, x2, "\n")
# No match if we get all the way here
if (is.null(arg2)) {
if (is.null(x2))
K <- fhandle(arg1, x1)
else
K <- fhandle(arg1, x1, x2)
}
else {
if (is.null(x2))
K <- fhandle(arg1, arg2, x1)
else
K <- fhandle(arg1, arg2, x1, x2)
}
cache <- append(cache, list(list(key=key, value=K)))
if (length(global_cache) < i)
global_cache[[i]] <- list()
global_cache[[i]][[j]] <- cache
assign("cache", global_cache, envir=kern$cache)
return(K)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.