R/pvalues.R

Defines functions pvalues

### P values This function displyed the adjusted p values with BH method for each pairwise
### comparison of sample groups, by intergrating the p values from Student T test for normally
### distributed variables and from Wilcoxon Mann Whitney test for non-normally distributed
### variables.  file The connection to the data in the Univariate file.  fdr The false discovery
### rate for conceptualizing the rate of type I errors in null hypothesis testing when conducting
### multiple comparisons.  A matrix with p values
pvalues <- function(file, fdr) {
    pwdfile = paste(getwd(), "/Univariate/DataTable.csv", sep = "")
    file = pwdfile
    x <- read.csv(file, sep = ",", header = TRUE)
    x.x = x[, 3:ncol(x)]
    rownames(x.x) = x[, 2]
    k = matrix(x[, 1], ncol = 1)
    slink = paste(getwd(), "/DataPretreatment", "/slink.csv", sep = "")
    slink = read.csv(slink, header = TRUE)
    x.n = cbind(k, x.x)
    sorted = x.n[order(x.n[, 1]), ]
    sorted.x = sorted[, -1]
    g = c()
    for (i in 1:nrow(sorted)) {
        if (any(g == sorted[i, 1])) {
            g = g
        } else {
            g = matrix(c(g, sorted[i, 1]), ncol = 1)
        }
    }
    NoF = nrow(g)
    dirout.pv = paste(getwd(), "/Univariate/Pvalues/", sep = "")
    dir.create(dirout.pv)
    dirout.sign = paste(getwd(), "/Univariate/Significant_Variables/", sep = "")
    dir.create(dirout.sign)
    for (i in 1:NoF) {
        for (j in 1:NoF) {
            if (i < j) {
                shapi = paste("ShapiroTest.", ExcName(i, slink), ".csv", sep = "")
                shapj = paste("ShapiroTest.", ExcName(j, slink), ".csv", sep = "")
                shap.pwdi = paste(getwd(), "/Univariate/Shapiro_Tests/", shapi, sep = "")
                shap.pwdj = paste(getwd(), "/Univariate/Shapiro_Tests/", shapj, sep = "")
                Si = read.csv(shap.pwdi, header = TRUE)
                Sj = read.csv(shap.pwdj, header = TRUE)
                Si = matrix(Si[, -1], ncol = 1)
                Sj = matrix(Sj[, -1], ncol = 1)
                welchij = paste("WelchTest_", ExcName(i, slink), "vs", ExcName(j, slink), ".csv", 
                  sep = "")
                welch.pwdij = paste(getwd(), "/Univariate/WelchTest/", welchij, sep = "")
                Wij = read.csv(welch.pwdij, header = TRUE)
                Wij = matrix(Wij[, -1], ncol = 1)
                Wij[is.na(Wij)] <- 1
                wmwp = paste("WMWTest_pvalues_", ExcName(i, slink), "vs", ExcName(j, slink), ".csv", 
                  sep = "")
                wmw.pwd = paste(getwd(), "/Univariate/MannWhitneyTests/", wmwp, sep = "")
                WMWp = read.csv(wmw.pwd, header = TRUE)
                WMWp = matrix(WMWp[, -1], ncol = 1)
                WMWp[is.na(WMWp)] <- 1
                
                fin = ncol(sorted) - 1
                pvalues = matrix(rep(1, fin))
                for (q in 1:fin) {
                  if (Si[q, ] > 0.05 & Sj[q, ] > 0.05) {
                    pvalues[q, ] <- Wij[q, ]
                  } else {
                    pvalues[q, ] <- WMWp[q, ]
                  }
                }
                if (fdr) {
                  pval.corr = matrix(p.adjust(pvalues, method = c("BH"), n = nrow(pvalues)), ncol = 1)
                  rownames(pval.corr) = colnames(x.x)
                  colnames(pval.corr) <- c("adjusted.pvalue")
                  pvalfin = paste("Pvalues_", ExcName(i, slink), "vs", ExcName(j, slink), ".csv", 
                    sep = "")
                  assign(pvalfin, pval.corr)
                  write.csv(pval.corr, paste(dirout.pv, pvalfin, sep = ""))
                  sign = c()
                  for (q in 1:fin) {
                    if (pval.corr[q, ] < 0.05) {
                      sign = matrix(c(sign, colnames(sorted.x)[q]))
                    }
                  }
                  #colnames(sign) <- c("adjusted.pvalue")
                  signnam = paste("Significant_Variables_", ExcName(i, slink), "vs", ExcName(j, slink), 
                    ".csv", sep = "")
                  assign(signnam, sign)
                  write.csv(sign, paste(dirout.sign, signnam, sep = ""), row.names = FALSE)
                } else {
                  colnames(pvalues) <- c("pvalue")
                  rownames(pvalues) = colnames(x.x)
                  pvalfin = paste("Pvalues_", ExcName(i, slink), "vs", ExcName(j, slink), ".csv", 
                    sep = "")
                  assign(pvalfin, pvalues)
                  write.csv(pvalues, paste(dirout.pv, pvalfin, sep = ""))
                  sign = c()
                  for (q in 1:fin) {
                    if (pvalues[q, ] < 0.05) {
                      sign = matrix(c(sign, colnames(sorted.x)[q]))
                    }
                  }
                  #colnames(sign) <- c("pvalue")
                  signnam = paste("Significant_Variables_", ExcName(i, slink), "vs", ExcName(j, slink), 
                    ".csv", sep = "")
                  assign(signnam, sign)
                  write.csv(sign, paste(dirout.sign, signnam, sep = ""), row.names = FALSE)
                }
            }
        }
    }
}

Try the statTarget package in your browser

Any scripts or data that you put into this service are public.

statTarget documentation built on Nov. 8, 2020, 8:27 p.m.