Nothing
### Description statistic bStatX provide the basic data description for each features. Data
### descriptions includes mean value, median value, sum, quartile, standard derivatives, etc. file
### The file with the expression information. A matrix for data description bStatX(file)
bStatX <- function(file) {
# xr <- read.csv(file, sep=',', header=TRUE)
xr = file
xs = xr[, 3:ncol(xr)]
x = cbind(xr[, 2], xr[, 1], xs)
x.nn = x
sorted = x.nn[order(x.nn[, 1]), ]
g = c()
for (i in 1:nrow(sorted)) {
if (any(g == as.numeric(sorted[i, 1]))) {
g = g
} else {
g = matrix(c(g, as.numeric(sorted[i, 1])), ncol = 1)
}
}
dirout.g = paste(getwd(), "/statTarget/statAnalysis/tmp", sep = "")
dir.create(dirout.g)
slink = paste(getwd(), "/statTarget/statAnalysis/DataPretreatment", "/slink.csv", sep = "")
slink = read.csv(slink, header = TRUE)
for (i in 1:nrow(g)) {
vuota <- c()
fin = matrix(rep(NA, ncol(sorted)), nrow = 1)
for (j in 1:nrow(sorted)) {
if (sorted[j, 1] == i) {
vuota <- as.matrix(sorted[j, ], nrow = 1)
rownames(vuota) = rownames(sorted)[j]
fin = rbind(fin, vuota)
}
}
nam = paste("r", ExcName(i, slink), sep = ".")
n = matrix(fin[-1, ], ncol = ncol(sorted))
n.x = matrix(n[, -1], ncol = ncol(sorted) - 1)
colnames(n.x) = colnames(x.nn[, 2:ncol(x.nn)])
name = as.matrix(assign(nam, n.x))
outputfileg = paste("r.", ExcName(i, slink), ".csv", sep = "")
write.csv(name, paste(dirout.g, outputfileg, sep = "/"), row.names = FALSE)
}
dirout.w = paste(getwd(), "/statTarget/statAnalysis/dataSummary", sep = "")
dir.create(dirout.w)
NoF = nrow(g)
for (i in 1:NoF) {
ni = paste("r.", ExcName(i, slink), ".csv", sep = "")
pwdi = paste(getwd(), "/statTarget/statAnalysis/tmp/", ni, sep = "")
I = read.csv(pwdi, header = TRUE)
I = I[, -1]
bS = bStat(I)
bStat.i = paste("dataSumm_", ExcName(i, slink), ".csv", sep = "")
assign(bStat.i, bS)
write.csv(t(bS), paste(dirout.w, bStat.i, sep = "/"))
}
tmpfile = paste(getwd(), "/tmp/", sep = "")
unlink(tmpfile, recursive = TRUE)
}
# This library is free software; you can redistribute it and/or modify it under the terms of the
# GNU Library General Public License as published by the Free Software Foundation; either version
# 2 of the License, or (at your option) any later version. This library is distributed in the
# hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License
# for more details. You should have received A copy of the GNU Library General Public License
# along with this library; if not, write to the Free Foundation, Inc., 59 Temple Place, Suite 330,
# Boston, MA 02111-1307 USA
################################################################################ FUNCTION: BASIC STATISTICS: basicStats Returns a basic statistics summary
bStatCor = function(x, ci = 0.95) {
# A function implemented by Diethelm Wuertz
# Description: Calculates Basic Statistics
# Arguments: x - an object which can be transformed by the function as.matrix() into an object of
# class matrix. ci - a numeric value setting the confidence interval.
# Value: a two-column data frame, where the first column takes the value of the statistics, and
# the second its name, e.g. 'nobs', 'NAs', 'Minimum', 'Maximum', '1. Quartile', '3. Quartile',
# 'Mean', 'Median', 'Sum', 'SE Mean', 'LCL Mean', 'UCL Mean', 'Variance', 'Stdev', 'Skewness',
# 'Kurtosis')
# FUNCTION:
# Univariate/Multivariate:
y = as.matrix(x)
# Handle Column Names:
if (is.null(colnames(y))) {
Dim = dim(y)[2]
if (Dim == 1) {
colnames(y) = paste(substitute(x), collapse = ".")
} else if (Dim > 1) {
colnames(y) = paste(paste(substitute(x), collapse = ""), 1:Dim, sep = "")
}
}
# Internal Function - CL Levels:
cl.vals = function(x, ci) {
x = x[!is.na(x)]
n = length(x)
if (n <= 1)
return(c(NA, NA))
se.mean = sqrt(stats::var(x)/n)
t.val = qt((1 - ci)/2, n - 1)
mn = mean(x)
lcl = mn + se.mean * t.val
ucl = mn - se.mean * t.val
c(lcl, ucl)
}
# Basic Statistics:
nColumns = dim(y)[2]
ans = NULL
for (i in 1:nColumns) {
X = as.numeric(y[, i])
# Observations:
X.length = length(X)
X = X[!is.na(X)]
X.na = X.length - length(X)
# Basic Statistics:
z = c(X.length, X.na, min(X), max(X), as.numeric(quantile(X, prob = 0.25, na.rm = TRUE)),
as.numeric(quantile(X, prob = 0.75, na.rm = TRUE)), mean(X), median(X), sum(X), sqrt(stats::var(X)/length(X)),
cl.vals(X, ci)[1], cl.vals(X, ci)[2], stats::var(X), sqrt(stats::var(X)), sqrt(stats::var(X))/mean(X))
# Row Names:
znames = c("nobs", "NAs", "Minimum", "Maximum", "1. Quartile", "3. Quartile", "Mean", "Median",
"Sum", "SE Mean", "LCL Mean", "UCL Mean", "Variance", "Stdev", "RSD")
# Output as data.frame
result = matrix(z, ncol = 1)
row.names(result) = znames
ans = cbind(ans, result)
}
# Column Names:
colnames(ans) = colnames(y)
# Return Value:
data.frame(round(ans, digits = 6))
}
################################################################################
bStat = function(x, ci = 0.95) {
# A function implemented by Diethelm Wuertz
# Description: Calculates Basic Statistics
# Arguments: x - an object which can be transformed by the function as.matrix() into an object of
# class matrix. ci - a numeric value setting the confidence interval.
# Value: a two-column data frame, where the first column takes the value of the statistics, and
# the second its name, e.g. 'nobs', 'NAs', 'Minimum', 'Maximum', '1. Quartile', '3. Quartile',
# 'Mean', 'Median', 'Sum', 'SE Mean', 'LCL Mean', 'UCL Mean', 'Variance', 'Stdev', 'Skewness',
# 'Kurtosis')
# FUNCTION:
# Univariate/Multivariate:
y = as.matrix(x)
# Handle Column Names:
if (is.null(colnames(y))) {
Dim = dim(y)[2]
if (Dim == 1) {
colnames(y) = paste(substitute(x), collapse = ".")
} else if (Dim > 1) {
colnames(y) = paste(paste(substitute(x), collapse = ""), 1:Dim, sep = "")
}
}
# Internal Function - CL Levels:
cl.vals = function(x, ci) {
x = x[!is.na(x)]
n = length(x)
if (n <= 1)
return(c(NA, NA))
se.mean = sqrt(stats::var(x)/n)
t.val = qt((1 - ci)/2, n - 1)
mn = mean(x)
lcl = mn + se.mean * t.val
ucl = mn - se.mean * t.val
c(lcl, ucl)
}
# Basic Statistics:
nColumns = dim(y)[2]
ans = NULL
for (i in 1:nColumns) {
X = y[, i]
# Observations:
X.length = length(X)
X = X[!is.na(X)]
X.na = X.length - length(X)
# Basic Statistics:
z = c(X.length, X.na, min(X), max(X), as.numeric(quantile(X, prob = 0.25, na.rm = TRUE)),
as.numeric(quantile(X, prob = 0.75, na.rm = TRUE)), mean(X), median(X), sum(X), sqrt(stats::var(X)/length(X)),
cl.vals(X, ci)[1], cl.vals(X, ci)[2], stats::var(X), sqrt(stats::var(X)))
# Row Names:
znames = c("nobs", "NAs", "Minimum", "Maximum", "1. Quartile", "3. Quartile", "Mean", "Median",
"Sum", "SE Mean", "LCL Mean", "UCL Mean", "Variance", "Stdev")
# Output as data.frame
result = matrix(z, ncol = 1)
row.names(result) = znames
ans = cbind(ans, result)
}
# Column Names:
colnames(ans) = colnames(y)
# Return Value:
data.frame(round(ans, digits = 6))
}
################################################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.