R/demultiplex.R

Defines functions .demultiplexUnit demultiplex

Documented in demultiplex

#' Demultiplex cell barcodes and assign cell specific reads
#'
#' Demultiplex fastq files and write cell specific reads in compressed fastq
#'  format to output directory
#'
#' @param project The project name. Default is
#'  \code{paste0("project_", Sys.Date())}.
#' @param experiment A character vector of experiment names. Represents the
#'  group label for each FASTQ file, e.g. "patient1, patient2, ...". The number
#'  of cells in a experiment equals the length of cell barcodes \code{bc}. The
#'  length of \code{experiment} equals the number of FASTQ files to be
#'  processed.
#' @param lane A character or character vector of flow cell lane numbers. FASTQ
#'  files from lanes having the same \code{experiment} will be concatenated. If
#'  FASTQ files from multiple lanes are already concatenated, any placeholder
#'  would be sufficient, e.g. "L001".
#' @param read1Path A character vector of file paths to the read 1 FASTQ files.
#'  These are the read files containing UMI and cell barcode sequences.
#' @param read2Path A character vector of file paths to the read 2 FASTQ files.
#'  These read files contain genomic transcript sequences.
#' @param bc A character vector of pre-determined cell barcodes. For example,
#'  see \code{?barcodeExample}.
#' @param bcStart Integer or vector of integers containing the cell barcode
#'  start positions (inclusive, one-based numbering).
#' @param bcStop Integer or vector of integers containing the cell barcode
#'  stop positions (inclusive, one-based numbering).
#' @param bcEdit Maximally allowed Hamming distance for barcode correction.
#'  Barcodes with mismatches equal or fewer than this will be assigned a
#'  corrected barcode if the inferred barcode matches uniquely in the provided
#'  predetermined barcode list. Default is 0, meaning no cell barcode
#'  correction is performed.
#' @param umiStart Integer or vector of integers containing the start positions
#'  (inclusive, one-based numbering) of UMI sequences.
#' @param umiStop Integer or vector of integers containing the stop positions
#'  (inclusive, one-based numbering) of UMI sequences.
#' @param keep Read trimming. Read length or number of nucleotides to keep for
#'  read 2 (the read that contains transcript sequence information). Longer
#'  reads will be clipped at 3' end. Shorter reads will not be affected.
#' @param minQual Minimally acceptable Phred quality score for barcode and UMI
#'  sequences. Phread quality scores are calculated for each nucleotide in the
#'  sequence. Sequences with at least one nucleotide with score lower than this
#'  will be filtered out. Default is \strong{10}.
#' @param yieldReads The number of reads to yield when drawing successive
#'  subsets from a fastq file, providing the number of successive records to be
#'  returned on each yield. This parameter is passed to the \code{n} argument
#'  of the \code{FastqStreamer} function in \emph{ShortRead} package. Default
#'  is \strong{1e06}.
#' @param outDir Output folder path for demultiplex results. Demultiplexed
#'  cell specifc FASTQ files will be stored in folders in this path,
#'  respectively. \strong{Make sure the folder is empty.} Default is
#'  \code{"./Demultiplex"}.
#' @param summaryPrefix Prefix for demultiplex summary filename. Default is
#'  \code{"demultiplex"}.
#' @param overwrite Boolean indicating whether to overwrite the output
#'  directory. Default is \strong{FALSE}.
#' @param cores Number of cores used for parallelization. Default is
#'  \code{max(1, parallel::detectCores() - 2)}, i.e. the number of available
#'  cores minus 2.
#' @param verbose Poolean indicating whether to print log messages. Useful for
#'  debugging. Default to \strong{FALSE}.
#' @param logfilePrefix Prefix for log file. Default is current date and time
#'  in the format of \code{format(Sys.time(), "\%Y\%m\%d_\%H\%M\%S")}.
#' @return A \link[SingleCellExperiment]{SingleCellExperiment} object
#'  containing the demultiplex summary information in the \code{colData} slot.
#' @examples
#' # Demultiplex example FASTQ files
#' data(barcodeExample, package = "scruff")
#' fastqs <- list.files(system.file("extdata", package = "scruff"),
#'     pattern = "\\.fastq\\.gz", full.names = TRUE)
#'
#' de <- demultiplex(
#'     project = "example",
#'     experiment = c("1h1"),
#'     lane = c("L001"),
#'     read1Path = c(fastqs[1]),
#'     read2Path = c(fastqs[2]),
#'     barcodeExample,
#'     bcStart = 1,
#'     bcStop = 8,
#'     umiStart = 9,
#'     umiStop = 12,
#'     keep = 75,
#'     overwrite = TRUE)
#' @import data.table
#' @rawNamespace import(ShortRead, except = c(tables, zoom))
#' @importFrom plyr rbind.fill
#' @export
demultiplex <- function(project = paste0("project_", Sys.Date()),
    experiment,
    lane,
    read1Path,
    read2Path,
    bc,
    bcStart,
    bcStop,
    bcEdit = 0,
    umiStart,
    umiStop,
    keep,
    minQual = 10,
    yieldReads = 1e06,
    outDir = "./Demultiplex",
    summaryPrefix = "demultiplex",
    overwrite = FALSE,
    cores = max(1, parallel::detectCores() - 2),
    verbose = FALSE,
    logfilePrefix = format(Sys.time(), "%Y%m%d_%H%M%S")) {

    if (length(project) > 1) {
        stop("Project should be length 1")
    }

    .checkCores(cores)

    if (!all(file.exists(c(read1Path, read2Path)))) {
        stop("Partial or all FASTQ files nonexistent.",
            "Please check paths are correct.\n",
            read1Path,
            read2Path)
    }

    message(Sys.time(), " Start demultiplexing ...")
    print(match.call(expand.dots = TRUE))

    isWindows <- .Platform$OS.type == "windows"

    if (overwrite) {
        message(Sys.time(),
            " All files in ",
            outDir,
            " will be deleted ...")
    }

    fastqAnnot <- data.table::data.table(
        project = project,
        experiment = experiment,
        lane = lane,
        read1_path = read1Path,
        read2_path = read2Path)

    if (verbose) {
        message("Input sample information for FASTQ files:")
        print(fastqAnnot)
    }

    .checkCellBarcodes(bc, bcStart, bcStop, verbose)

    fastqAnnotDt <- data.table::data.table(fastqAnnot)
    barcodeDt <- data.table::data.table("cell_index" = seq_len(length(bc)),
        "barcode" = bc)
    expId <- fastqAnnotDt[, unique(experiment)]

    # disable threading in ShortRead package
    nthreads <- .Call(ShortRead:::.set_omp_threads, 1L)
    on.exit(.Call(ShortRead:::.set_omp_threads, nthreads))

    # parallelization BiocParallel

    if (isWindows) {
        # Windows
        if (verbose) {
            resL <- BiocParallel::bplapply(X = expId,
                FUN = .demultiplexUnit,
                BPPARAM = BiocParallel::SnowParam(
                    workers = cores),
                fastqAnnotDt,
                barcodeDt,
                bcStart,
                bcStop,
                bcEdit,
                umiStart,
                umiStop,
                keep,
                minQual,
                yieldReads,
                outDir,
                summaryPrefix,
                overwrite,
                logfilePrefix = logfilePrefix
            )
        } else {
            resL <- BiocParallel::bplapply(X = expId,
                FUN = .demultiplexUnit,
                BPPARAM = BiocParallel::SnowParam(
                    workers = cores),
                fastqAnnotDt,
                barcodeDt,
                bcStart,
                bcStop,
                bcEdit,
                umiStart,
                umiStop,
                keep,
                minQual,
                yieldReads,
                outDir,
                summaryPrefix,
                overwrite,
                logfilePrefix = NULL
            )
        }
    } else {
        # Linux or macOS
        if (verbose) {
            resL <- BiocParallel::bplapply(X = expId,
                FUN = .demultiplexUnit,
                BPPARAM =
                    BiocParallel::MulticoreParam(
                        workers = cores),
                fastqAnnotDt,
                barcodeDt,
                bcStart,
                bcStop,
                bcEdit,
                umiStart,
                umiStop,
                keep,
                minQual,
                yieldReads,
                outDir,
                summaryPrefix,
                overwrite,
                logfilePrefix = logfilePrefix
            )
        } else {
            resL <- BiocParallel::bplapply(X = expId,
                FUN = .demultiplexUnit,
                BPPARAM =
                    BiocParallel::MulticoreParam(
                        workers = cores),
                fastqAnnotDt,
                barcodeDt,
                bcStart,
                bcStop,
                bcEdit,
                umiStart,
                umiStop,
                keep,
                minQual,
                yieldReads,
                outDir,
                summaryPrefix,
                overwrite,
                logfilePrefix = NULL
            )
        }
    }

    resDt <- as.data.table(plyr::rbind.fill(resL))

    message(
        Sys.time(),
        " ... Write demultiplex summary for all experiments to ",
        file.path(outDir, paste0(
            format(Sys.time(), "%Y%m%d_%H%M%S"),
            "_",
            summaryPrefix,
            ".tab"
        ))
    )

    fwrite(resDt,
        file = file.path(outDir,
            paste0(
                format(Sys.time(),
                    "%Y%m%d_%H%M%S"),
                "_",
                summaryPrefix,
                ".tab"
            )),
        sep = "\t")

    cellname <- resDt[!is.na(cell_index), filename]
    cellname <- gsub(
        pattern = "\\.fastq$|\\.fastq\\.gz$",
        "",
        cellname,
        ignore.case = TRUE)

    # initialize sce object. Add demultiplex summary metadata
    message("... Initialize SingleCellExperiment object.")
    message("... Add demultiplex summary to SCE colData.")

    summaryDF <- S4Vectors::DataFrame(resDt[!is.na(cell_index), -"filename"],
        row.names = cellname)
    placeholder <- matrix(ncol = length(cellname))
    sce <- SingleCellExperiment::SingleCellExperiment(placeholder)
    SummarizedExperiment::colData(sce) <- summaryDF

    message(Sys.time(), " ... Demultiplex done!")
    return(sce)
}


# demultiplex unit function for one experiment (unique experiment id)
.demultiplexUnit <- function(i,
    fastq,
    barcodeDt,
    bcStart,
    bcStop,
    bcEdit,
    umiStart,
    umiStop,
    keep,
    minQual,
    yieldReads,
    outDir,
    summaryPrefix,
    overwrite,
    logfilePrefix) {

    if (!is.null(logfilePrefix)) {
        logfile <- paste0(logfilePrefix, "_demultiplex_", i, "_log.txt")
    } else {
        logfile <- NULL
    }

    .logMessages(Sys.time(),
        "... demultiplexing experiment",
        i,
        logfile = logfile,
        append = FALSE)

    expMetaDt <- fastq[experiment == i, ]
    lanes <- unique(expMetaDt[, lane])
    summaryDt <- data.table::copy(barcodeDt)
    summaryDt[, filename := paste0(expMetaDt[,
        paste(unique(project),
            i, sep = "_")],
        "_cell_",
        sprintf("%04d", cell_index),
        ".fastq.gz")]
    summaryDt[, reads := 0]
    summaryDt[, percent_assigned := 0]

    # initialize summary data table
    summaryDt <- data.table::rbindlist(
        list(
            summaryDt,
            list(
                cell_index = c(NA, NA, NA),
                barcode = c(NA, NA, NA),
                filename = c("low_quality", "undetermined", "total"),
                reads = c(0, 0, 0),
                percent_assigned = c(0, 0, 1)
            )
        ),
        use.names = TRUE,
        fill = TRUE,
        idcol = FALSE
    )
    summaryDt[, experiment := i]

    if (overwrite) {
        # delete existing results
        .logMessages(
            Sys.time(),
            "... Delete (if any) existing demultiplex results for experiment ",
            i,
            logfile = logfile,
            append = TRUE
        )
        unlink(file.path(outDir, i), recursive = TRUE)
    } else {
        if (any(file.exists(file.path(outDir, i,
            summaryDt[!(is.na(cell_index)),
                filename])))) {
            .logMessages(
                paste(
                    "Stop.",
                    summaryDt[!(is.na(cell_index)), ]
                    [which(file.exists(file.path(outDir, i,
                        summaryDt[!(is.na(cell_index)),
                            filename])) == TRUE),
                        filename],
                    "already exists in output directory",
                    file.path(outDir, i),
                    "\n"
                ),
                logfile = logfile,
                append = TRUE
            )
            message("Demultiplex output file already exists!")
            stop("Stop.",
                " Try re-running the function by setting overwrite to TRUE")
        }
    }

    for (j in lanes) {
        .logMessages(Sys.time(),
            "... Processing Lane",
            j,
            logfile = logfile,
            append = TRUE)

        f1 <- expMetaDt[lane == j, read1_path]
        f2 <- expMetaDt[lane == j, read2_path]

        if (length(f1) > 1 || length(f2) > 1) {
            stop("Duplicate lanes detected. ",
                "Lane should be unique for each FASTQ file. ",
                "Try modify the sample annotation table.")
        }

        fq1 <- ShortRead::FastqStreamer(f1, n = yieldReads)
        fq2 <- ShortRead::FastqStreamer(f2, n = yieldReads)
        repeat {
            fqy1 <- ShortRead::yield(fq1)
            fqy2 <- ShortRead::yield(fq2)
            if (length(fqy1) != length(fqy2)) {
                .logMessages(
                    Sys.time(),
                    "Stop. Unequal number of reads",
                    " between read1 and read2 fastq files:",
                    f1,
                    f2,
                    logfile = logfile,
                    append = TRUE
                )
                stop("Unequal number of reads",
                    " between read1 and read2 fastq files:",
                    f1,
                    f2)
            } else if (length(fqy1) == 0 & length(fqy2) == 0) {
                break
            }

            summaryDt[filename == "total", reads := reads + length(fqy1)]

            umiBcQual <- ""
            umiSeq <- ""
            bcSeq <- ""
            for (k in seq_len(length(umiStart))) {
                umiBcQual <- paste0(umiBcQual,
                    substr(fqy1@quality@quality,
                        umiStart[k],
                        umiStop[k]))
                umiSeq <- paste(umiSeq, substr(fqy1@sread,
                    umiStart[k],
                    umiStop[k]), sep = "_")
                umiSeq <- .stripLeadingUnderscore(umiSeq)
            }

            for (k in seq_len(length(bcStart))) {
                umiBcQual <- paste0(umiBcQual,
                    substr(fqy1@quality@quality,
                        bcStart[k],
                        bcStop[k]))
                bcSeq <- paste(bcSeq, substr(fqy1@sread,
                    bcStart[k],
                    bcStop[k]), sep = "_")
                bcSeq <- .stripLeadingUnderscore(bcSeq)
            }

            minBasePhred1 <- min(methods::as(
                Biostrings::PhredQuality(umiBcQual),
                "IntegerList"))

            fqyDt <- data.table::data.table(
                rname1 = data.table::tstrsplit(fqy1@id, " ")[[1]],
                rname2 = data.table::tstrsplit(fqy2@id, " ")[[1]],
                read1 = as.character(fqy1@sread),
                read2 = substr(fqy2@sread, 1, keep),
                qtring1 = as.character(fqy1@quality@quality),
                qtring2 = substr(fqy2@quality@quality, 1, keep),
                min.phred1 = minBasePhred1,
                length1 = S4Vectors::width(fqy1),
                #umi = substr(fqy1@sread, umi.pos[1], umi.pos[2]),
                umi = umiSeq,
                #barcode = substr(fqy1@sread, bc.pos[1], bc.pos[2])
                # barcodes are separated by "_"
                barcode = bcSeq
            )

            # remove low quality and short R1 reads

            fqyDt <- fqyDt[min.phred1 >= minQual &
                    length1 >= sum(bcStop - bcStart) +
                    length(bcStart) +
                    sum(umiStop - umiStart) +
                    length(umiStart), ]

            if (bcEdit > 0) {
                # cell barcode correction
                fqyDt[, bc_correct := vapply(barcode,
                    .bcCorrectMem,
                    character(1),
                    barcodeDt[, barcode],
                    bcEdit)]
            } else {
                fqyDt[, bc_correct := barcode]
            }

            summaryDt[filename == "low_quality",
                reads := reads + length(fqy1) - nrow(fqyDt)]

            for (k in barcodeDt[, cell_index]) {
                cellBarcode <- barcodeDt[cell_index == k, barcode]
                cfqDt <- fqyDt[bc_correct == cellBarcode, ]

                dir.create(file.path(outDir, i),
                    recursive = TRUE,
                    showWarnings = FALSE)
                # project_experiment_"cell"_cellnum.fastq.gz
                outFname <- summaryDt[cell_index == k, filename]
                outFull <- file.path(outDir, i, outFname)
                if (!file.exists(outFull)) {
                    file.create(outFull, showWarnings = FALSE)
                }

                # if barcode exists in fastq reads
                if (nrow(cfqDt) != 0) {
                    fqOut <- ShortRead::ShortReadQ(
                        sread = Biostrings::DNAStringSet(cfqDt[, read2]),
                        quality = Biostrings::BStringSet(cfqDt[, qtring2]),
                        id = Biostrings::BStringSet(cfqDt[, paste0(rname2,
                            ":UMI:",
                            umi, ":")])
                    )
                    # write reads to output file
                    ShortRead::writeFastq(fqOut, outFull, mode = "a")
                }
                summaryDt[barcode == cellBarcode, reads := reads + nrow(cfqDt)]
            }

            summaryDt[!(is.na(cell_index)),
                fastq_path := file.path(outDir, experiment, filename)]

            undeterminedDt <- fqyDt[!(bc_correct %in% barcodeDt[, barcode]), ]
            undeterminedFqOutR1 <- ShortRead::ShortReadQ(
                sread = Biostrings::DNAStringSet(undeterminedDt[, read1]),
                quality = Biostrings::BStringSet(undeterminedDt[, qtring1]),
                id = Biostrings::BStringSet(undeterminedDt[, rname1])
            )
            undeterminedFqOutR2 <- ShortRead::ShortReadQ(
                sread = Biostrings::DNAStringSet(undeterminedDt[, read2]),
                quality = Biostrings::BStringSet(undeterminedDt[, qtring2]),
                id = Biostrings::BStringSet(undeterminedDt[, rname2])
            )
            outFullUndeterminedR1 <- file.path(outDir,
                i,
                "Undetermined_R1.fastq.gz")
            outFullUndeterminedR2 <- file.path(outDir,
                i,
                "Undetermined_R2.fastq.gz")
            if (!file.exists(outFullUndeterminedR1)) {
                file.create(outFullUndeterminedR1, showWarnings = FALSE)
            }
            if (!file.exists(outFullUndeterminedR2)) {
                file.create(outFullUndeterminedR2, showWarnings = FALSE)
            }
            ShortRead::writeFastq(undeterminedFqOutR1,
                outFullUndeterminedR1, mode = "a")

            ShortRead::writeFastq(undeterminedFqOutR2,
                outFullUndeterminedR2, mode = "a")

            summaryDt[filename == "undetermined",
                reads := reads + nrow(undeterminedDt)]
            .logMessages(
                Sys.time(),
                paste("...", fq1$`.->.status`[3],
                    "read pairs processed"),
                logfile = logfile,
                append = TRUE
            )
        }
        close(fq1)
        close(fq2)
    }

    summaryDt[, percent_assigned := 100 * reads /
            summaryDt[filename == "total", reads]]

    .logMessages(
        Sys.time(),
        paste(
            "... Write",
            i,
            "demultiplex summary to",
            file.path(outDir, i, paste(expMetaDt[, unique(project)],
                summaryPrefix, i, sep =
                    "_"))
        ),
        logfile = logfile,
        append = TRUE
    )

    data.table::fwrite(summaryDt,
        file = file.path(
            outDir,
            i,
            paste(expMetaDt[, unique(project)],
                summaryPrefix, i, ".tab", sep =
                    "_")
        ),
        sep = "\t")

    .logMessages(
        Sys.time(),
        paste("... finished demultiplexing experiment", i),
        logfile = logfile,
        append = TRUE
    )

    return(summaryDt)
}

Try the scruff package in your browser

Any scripts or data that you put into this service are public.

scruff documentation built on Feb. 13, 2021, 2 a.m.