Nothing
.vapply_pb <- function(X, FUN, ...)
{
env <- environment()
pb_Total <- length(X)
counter <- 0
pb <- txtProgressBar(min = 0, max = pb_Total, style = 3)
wrapper <- function(...){
curVal <- get("counter", envir = env)
assign("counter", curVal +1 ,envir=env)
setTxtProgressBar(get("pb", envir=env), curVal +1)
FUN(...)
}
res <- vapply(X, wrapper, ...)
close(pb)
res
}
.aggr.by.sum <- function(input, rowID, LtoR, score, unique.right){
.aggr.by.xxx(input, rowID, LtoR, score, unique.right, "sum")
}
.aggr.by.mean <- function(input, rowID, LtoR, score, unique.right){
.aggr.by.xxx(input, rowID, LtoR, score, unique.right, "mean")
}
.aggr.by.xxx <- function(input, rowID, LtoR, score, unique.right, ftype){
vval <- list(input=input, rowID=rowID,
LtoR=LtoR, score=score, ftype=ftype)
out <- t(.vapply_pb(unique.right, function(x, vval){
f <- vval$f
input <- vval$input
rowID <- vval$rowID
LtoR <- vval$LtoR
score <- vval$score
ftype <- vval$ftype
.each_x(input, rowID, LtoR, score, x, ftype)
}, vval=vval, list(1.0*input[1,], c("", ""))))
output <- matrix(unlist(out[,1]), ncol=length(input[1,]), byrow=TRUE)
ctable <- matrix(unlist(out[,2]), ncol=2, byrow=TRUE)
list(output=output, ctable=ctable)
}
.each_x <- function(input, rowID, LtoR, score, x, ftype){
position <- which(LtoR[,2] == x)
position2 <- sapply(LtoR[position, 1], function(x){which(rowID == x)})
if(length(position2) == 1){
left <- rowID[position2]
out <- input[position2, ]
}else{
left <- paste0(rowID[position2], collapse=" / ")
out <- .flist2[[ftype]](input[position2, ])
}
right <- x
list(out, c(left, right))
}
.aggr.by.score <- function(input, rowID, LtoR, score, unique.right){
bp <- graph.data.frame(LtoR, directed=FALSE)
V(bp)$type <- c(rep(TRUE, length(unique(LtoR[,1]))),
rep(FALSE, length(unique(LtoR[,2]))))
E(bp)$weight <- score
tmp <- na.omit(max_bipartite_match(bp)$matching)
tmp <- tmp[seq(length(tmp)/2)]
left <- names(tmp)
right <- as.character(tmp)
ctable <- cbind(left, right)
output <- input[sapply(left, function(x){
which(rowID == x)
}), ]
list(output=output, ctable=ctable)
}
.flist <- list(
"sum" = .aggr.by.sum,
"mean" = .aggr.by.mean,
"large.mean" = .aggr.by.score,
"large.var" = .aggr.by.score,
"large.cv2" = .aggr.by.score
)
.flist2 <- list(
"sum" = colSums,
"mean" = colMeans
)
.score <- function(input, aggr.rule){
if(aggr.rule %in% c("sum", "mean")){
NULL
}else{
if(aggr.rule == "large.mean"){
score <- apply(input, 1, sum)
}
if(aggr.rule == "large.var"){
score <- apply(input, 1, var)
}
if(aggr.rule == "large.cv2"){
score <- apply(input, 1, function(x){sd(x) / mean(x)})
}
score[which(is.nan(score))] <- -1E+50
score[which(is.na(score))] <- -1E+50
score[which(is.infinite(score))] <- -1E+50
score
}
}
convertRowID <- function(input, rowID, LtoR,
aggr.rule=c("sum", "mean", "large.mean", "large.var", "large.cv2")){
# Argument check
aggr.rule = match.arg(aggr.rule)
if(dim(input)[1] != length(rowID)){
stop("The number of rows of input and the length of rowID must be same.")
}
LtoR <- LtoR[which(!is.na(LtoR[,1])), ]
LtoR <- LtoR[which(!is.na(LtoR[,2])), ]
target <- unlist(sapply(intersect(LtoR[,1], rowID), function(x){
which(LtoR[,1] == x)}))
LtoR <- LtoR[target, ]
if(nrow(LtoR) == 0){
stop("There is no common with rowID and LtoR.")
}else{
position <- sapply(intersect(LtoR[,1], rowID), function(x){
which(rowID == x)[1]})
input <- input[position, ]
rowID <- rowID[position]
}
score <- .score(input, aggr.rule)
# Mapping
unique.right <- as.character(unique(LtoR[, 2]))
f <- .flist[[aggr.rule]]
out <- f(input, rowID, LtoR, score, unique.right)
output <- out$output
ctable <- out$ctable
colnames(ctable) <- c("Left", "Right")
colnames(output) <- colnames(input)
rownames(output) <- ctable[,2]
# Output
message("Input matrix: ", nrow(input), "x", ncol(input))
message("Output matrix: ", nrow(output), "x", ncol(output))
if(aggr.rule %in% c("sum", "mean")){
message("Some gene expression vectors were collapsed into single vector")
message(" by ", aggr.rule, " rule")
}
if(aggr.rule %in% c("large.mean", "large.var", "large.cv2")){
message("Single gene expression vector was selected from some vectors")
message(" by ", aggr.rule, " rule")
dif <- nrow(input) - nrow(output)
if(dif > 0){
message(paste0(dif, " of genes are removed from input matrix (",
nrow(input), "x", ncol(input), "), ",
"and ", nrow(output), " of genes are selected."))
}
}
list(output=output, ctable=ctable)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.