Nothing
## ----setup, include=FALSE------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## ---- message=FALSE------------------------------------------------------
library(scAlign)
library(SingleCellExperiment)
library(ggplot2)
## Load in cellbench data
data("cellbench", package = "scAlign", envir = environment())
## Extract RNA mixture cell types
mix.types = unlist(lapply(strsplit(colnames(cellbench), "-"), "[[", 2))
## Extract Platform
batch = c(rep("CEL", length(which(!grepl("sortseq", colnames(cellbench)) == TRUE))),
rep("SORT", length(which(grepl("sortseq", colnames(cellbench)) == TRUE))))
## ------------------------------------------------------------------------
## Create SCE objects to pass into scAlignCreateObject
youngMouseSCE <- SingleCellExperiment(
assays = list(scale.data = cellbench[,batch=='CEL'])
)
oldMouseSCE <- SingleCellExperiment(
assays = list(scale.data = cellbench[,batch=='SORT'])
)
## Build the scAlign class object and compute PCs
scAlignCB = scAlignCreateObject(sce.objects = list("CEL"=youngMouseSCE,
"SORT"=oldMouseSCE),
labels = list(mix.types[batch=='CEL'],
mix.types[batch=='SORT']),
data.use="scale.data",
pca.reduce = FALSE,
cca.reduce = TRUE,
ccs.compute = 5,
project.name = "scAlign_cellbench")
## ------------------------------------------------------------------------
## Run scAlign with all_genes
scAlignCB = scAlign(scAlignCB,
options=scAlignOptions(steps=1000,
log.every=1000,
norm=TRUE,
early.stop=TRUE),
encoder.data="scale.data",
supervised='none',
run.encoder=TRUE,
run.decoder=FALSE,
log.dir=file.path('~/models_temp','gene_input'),
device="CPU")
# ## Additional run of scAlign with CCA
# scAlignCB = scAlign(scAlignCB,
# options=scAlignOptions(steps=1000,
# log.every=1000,
# norm=TRUE,
# early.stop=TRUE),
# encoder.data="CCA",
# supervised='none',
# run.encoder=TRUE,
# run.decoder=FALSE,
# log.dir=file.path('~/models','cca_input'),
# device="CPU")
## Plot aligned data in tSNE space, when the data was processed in three different ways:
## 1) either using the original gene inputs,
## 2) after CCA dimensionality reduction for preprocessing.
## Cells here are colored by input labels
set.seed(5678)
gene_plot = PlotTSNE(scAlignCB,
"ALIGNED-GENE",
title="scAlign-Gene",
perplexity=30)
## Show plot
gene_plot
# cca_plot = PlotTSNE(scAlignCB,
# "ALIGNED-CCA",
# title="scAlign-CCA",
# perplexity=30)
#
# multi_plot_labels = grid.arrange(gene_plot, cca_plot, nrow = 1)
## ------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.