PlotTSNE: Creates tsne plot

Description Usage Arguments Value Examples

View source: R/utils.R

Description

Helper function to plot aligned data from the results of running scAlign().

Usage

1
2
PlotTSNE(object, data.use, labels.use = "scAlign.labels", cols = NULL,
  title = "", legend = "none", seed = 1234, ...)

Arguments

object

scAlign class object with aligned data

data.use

Specifies which alignment results to use.

labels.use

Specifies "dataset" or "celltype" labeling from object meta.data.

cols

Colours for plot

title

ggplot title

legend

Determines if legend should be drawn

seed

Random seed for reproducability

...

Additional arguments to Rtsne function

labels

Object labels

Value

ggplot2 object

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
 library(SingleCellExperiment)

 ## Input data, 1000 genes x 100 cells
 data = matrix( rnorm(1000*100,mean=0,sd=1), 1000, 100)
 rownames(data) = paste0("gene", seq_len(1000))
 colnames(data) = paste0("cell", seq_len(100))

 age    = c(rep("young",50), rep("old",50))
 labels = c(c(rep("type1",25), rep("type2",25)), c(rep("type1",25), rep("type2",25)))

 ctrl.data = data[,which(age == "young")]
 stim.data = data[,which(age == "old")]

 ## Build the SCE object for input to scAlign using Seurat preprocessing and variable gene selection
 ctrlSCE <- SingleCellExperiment(
               assays = list(scale.data = data[,which(age == "young")]))

 stimSCE <- SingleCellExperiment(
               assays = list(scale.data = data[,which(age == "old")]))

 ## Build the scAlign class object and compute PCs
 scAlignHSC = scAlignCreateObject(sce.objects = list("YOUNG"=ctrlSCE,
                                                     "OLD"=stimSCE),
                                  labels = list(labels[which(age == "young")],
                                                labels[which(age == "old")]),
                                  pca.reduce = FALSE,
                                  cca.reduce = FALSE,
                                  project.name = "scAlign_Kowalcyzk_HSC")

 ## Run scAlign with high_var_genes
 scAlignHSC = scAlign(scAlignHSC,
                    options=scAlignOptions(steps=100,
                                           log.every=100,
                                           norm=TRUE,
                                           early.stop=FALSE),
                    encoder.data="scale.data",
                    supervised='none',
                    run.encoder=TRUE,
                    run.decoder=FALSE,
                    log.results=FALSE,
                    log.dir=file.path('~/models','gene_input'),
                    device="CPU")

 ## Plot alignment for 3 input types
 example_plot = PlotTSNE(scAlignHSC,
                           "ALIGNED-GENE",
                           "scAlign.labels",
                           title="scAlign-Gene",
                           perplexity=30)

scAlign documentation built on April 28, 2020, 6:10 p.m.