Nothing
#' Retrieves a list of reference names
#'
#' Gets a list of reference names by reading directly from the .ribo file
#'
#' @param ribo.object A 'Ribo' object-=09
#' @return a list of the reference names
#' @importFrom rhdf5 h5read
#' @export
#' @examples
#' #generate a ribo object with transcript nicknames/aliases
#' file.path <- system.file("extdata", "HEK293_ingolia.ribo", package = "ribor")
#' sample <- Ribo(file.path)
#'
#' #get the reference names
#' names <- get_reference_names(sample)
get_reference_names <- function(ribo.object) {
# Retrieves the reference transcript names
return(h5read(path(ribo.object),
name = "reference/reference_names"))
}
get_reference_lengths <- function(ribo.object) {
# Retrieves the reference transcript lengths
validObject(ribo.object)
row.names <- h5read(path(ribo.object),
name = "reference/reference_names")
lengths <- h5read(path(ribo.object),
name = "reference/reference_lengths")
return(data.frame(transcript = row.names, length = lengths))
}
#' Renames the transcripts
#'
#' The function \code{\link{rename_transcripts}} strives to make the transcript names less
#' cumbersome to write and easier to use.
#'
#' Transcript names found in a .ribo file can often be long and inconvenient to use.
#' As a result, this function allows the user to rename the transcripts.
#'
#' Often times, a short function can be used on the ribo file reference names
#' to split and extract a more convenient name, and a function with a similar input and
#' output to {\code{\link{rename_default}}} can be passed in.
#'
#' However, if there is no simple function that takes the original name and renames it into
#' a unique alias, then the user can provide a character vector of the same length as the number of
#' transcripts in the ribo file. This character vector would provide aliases that match the order
#' of the original reference names returned by the {\code{\link{get_reference_names}}} function.
#'
#' @param ribo a path to the ribo file or a 'Ribo' object
#' @param rename A function that renames the original transcript or an already generated
#' character vector of aliases
#' @importFrom rhdf5 h5read
#' @seealso
#' {\code{\link{rename_default}}} to view expected input and output of a 'rename' function
#' {\code{\link{Ribo}}} to generate a ribo object
#' @examples
#' file.path <- system.file("extdata", "HEK293_ingolia.ribo", package = "ribor")
#' sample <- Ribo(file.path, rename = rename_default)
#'
#' aliases <- rename_transcripts(sample, rename = rename_default)
#' @export
#' @return A character vector denoting the renamed transcript aliases
rename_transcripts <- function(ribo, rename) {
#ensure that the ribo path is retrieved
ribo.path <- ribo
if (is(ribo, "Ribo")) {
ribo.path <- path(ribo)
}
#handle the function case and the vector case
simplify <- NULL
original <- h5read(ribo.path,
name = "reference/reference_names")
if (is.function(rename)) {
simplify <- vapply(X = original,
FUN = rename,
FUN.VALUE = "character")
} else if (is.vector(rename)) {
#handle the case that rename is a list as well
simplify <- unlist(rename)
} else {
stop("Param 'rename' must be a function or a vector.")
}
if (anyDuplicated(simplify)) {
stop("Invalid param 'rename'. Redundant values found in the alias.",
call. = FALSE)
}
# helper function to rename the long transcript names
return(simplify)
}
#' Rename function for appris transcriptome naming convention
#'
#' The function {\code{\link{rename_default}}} is the default renaming function for the
#' appris human transcriptome. It takes one single transcript name and returns a simplified
#' alias.
#' @examples
#' original <- paste("ENST00000613283.2|ENSG00000136997.17|",
#' "OTTHUMG00000128475.8|-|MYC-206|MYC|1365|protein_coding|",
#' sep = "")
#' alias <- rename_default(original)
#' @param x Character denoting original name of the transcript
#' @return Character denoting simplified name of the object
#' @export
rename_default <- function(x) {
return(unlist(strsplit(x, split = "|", fixed = TRUE))[5])
}
get_content_info <- function(ribo.path) {
file_info <- h5ls(ribo.path, recursive = TRUE, all = FALSE)
experiment <- file_info[file_info$group == "/experiments", ]$name
length <- length(experiment)
#creates the separate lists for reads, coverage, rna.seq, and metadata
#to eventually put in a data frame
reads.list <- vector(mode = "integer", length = length)
coverage.list <- vector(mode = "logical", length = length)
rna.seq.list <- vector(mode = "logical", length = length)
metadata.list <- vector(mode = "logical", length = length)
#ls function provides information about the contents of each experiment
ls <- h5ls(ribo.path)
#loop over all of the experiments
for (i in seq(length)) {
exp <- experiment[i]
#gathers information on the number of reads for each experiment by looking at
#the attributes
name <-
paste("/experiments/", exp, sep = "")
attribute <- h5readAttributes(ribo.path, name)
reads.list[i] <- attribute[["total_reads"]]
#creates separate logical lists to denote the presence of
#reads, coverage, RNA-seq, metadata
metadata.list[i] <- ("metadata" %in% names(attribute))
group.contents <- ls[ls$group == name,]
group.names <- group.contents$name
coverage.list[i] <- ("coverage" %in% group.names)
rna.seq.list[i] <- ("rnaseq" %in% group.names)
}
experiments.info <- data.frame(
experiment = experiment,
total.reads = reads.list,
coverage = coverage.list,
rna.seq = rna.seq.list,
metadata = metadata.list,
stringsAsFactors = FALSE
)
return(experiments.info)
}
get_attributes <- function(ribo.object) {
# Retrieves the attributes of the ribo.object
path <- path(ribo.object)
attribute <- h5readAttributes(path, "/")
return(attribute[-which(names(attribute) == "time")])
}
get_read_lengths <- function(ribo.object) {
# Retrieves the minimum and maximum read lengths
#
# get_read_lengths finds the minimum and maximum read lengths of the .ribo file
attributes <- get_attributes(ribo.object)
result <- c(attributes$length_min, attributes$length_max)
return(result)
}
make_dataframe <- function(ribo.object,
matched.list,
range.info,
conditions,
matrix) {
alias <- conditions[["alias"]]
ref.names <- get_reference_names(ribo.object)
# helper function that creates a polished dataframe out of a filled in matrix
if (alias) {
original <- ref.names
ref.names <- vector(mode = "character", length = length(original))
for (i in seq(length(ref.names))) {
ref.names[i] <- original_hash(ribo.object)[[original[[i]]]]
}
}
return(help_make_dataframe(ref.names,
conditions,
matched.list,
range.info,
matrix))
}
help_make_dataframe <- function(ref.names,
conditions,
matched.list,
range.info,
matrix) {
# helper that generates data frame of the correct size
# the helper method is used for both the get_region_counts
# and the get_metagene functions,
range.lower <- range.info['range.lower']
range.upper <- range.info['range.upper']
transcript <- conditions[["transcript"]]
length <- conditions[["length"]]
ref.length <- length(ref.names)
num.reads <- range.upper - range.lower + 1
total.list <- length(matched.list)
# get the matrix data and pass create a data frame of the
# correct format
if (transcript & length) {
experiment.list <- matched.list
return (data.frame(experiment = matched.list,
matrix,
stringsAsFactors = FALSE,
check.names = FALSE))
} else if (transcript) {
#sum transcripts only
experiment.column <- rep(matched.list, each = num.reads)
read.column <- rep(c(range.lower:range.upper), total.list)
return (data.frame(experiment = experiment.column,
length = read.column,
matrix, stringsAsFactors = FALSE,
check.names = FALSE))
} else if (length) {
#length only
experiment.column <- rep(matched.list, each = ref.length)
transcript.column <- rep(ref.names, total.list)
return (data.frame(experiment = experiment.column,
transcript = transcript.column,
matrix, stringsAsFactors = FALSE,
check.names = FALSE))
}
#!transcript and !length
experiment.column <- rep(matched.list, each = num.reads * ref.length)
transcripts <- rep(ref.names, total.list * num.reads)
ref.read <- rep(c(range.lower:range.upper), each = ref.length)
read.column <- rep(ref.read, total.list)
return (data.frame(experiment = experiment.column,
transcript = transcripts,
length = read.column,
matrix, stringsAsFactors = FALSE,
check.names = FALSE))
}
generate_matrix <- function(ribo.object,
transcript,
length,
normalize,
ncol,
file,
path,
index){
#helper method that generates the matrix under different circumstances
experiment <- strsplit(path, split="/")[[1]][3]
output <- t(h5read(file=file, index=index, name=path))
ref.length <- length(get_reference_names(ribo.object))
single <- (ref.length == nrow(output))
# handle the different cases of the user's passed in parameters for
# transcript and length
if (transcript & length) {
output <- matrix(unlist(colSums(output)), ncol=ncol, byrow=TRUE)
} else if (transcript) {
# condense all transcripts together
condense_transcripts <- seq(from = 1 ,
to = nrow(output),
by = ref.length)
output <- lapply(condense_transcripts, sum_lengths,
ref.length = ref.length,
mat = output)
output <- matrix(unlist(output), ncol=ncol, byrow=TRUE)
} else if (length) {
#only sum across lengths if there is more than one length
if (!single) {
val <- seq(ref.length)
condense_lengths <- lapply(val,
seq,
to = nrow(output),
by = ref.length)
output <- lapply(condense_lengths, sum_transcripts, mat=output)
output <- matrix(unlist(output), ncol=ncol, byrow=TRUE)
}
}
return(output)
}
sum_transcripts <- function (index, mat) {
#in the case that there is only one region
if (ncol(mat) == 1) {
return(sum(mat[index, ]))
}
return (colSums(mat[index, ]))
}
sum_lengths <- function(index, ref.length, mat) {
#in the case that there is only one region
if (ncol(mat) == 1) {
return(sum(mat[index:(index+ref.length-1), ]))
}
return (colSums(mat[index:(index+ref.length-1), ]))
}
prepare_DataFrame <- function(ribo.object, DF) {
# Helper method that creates factors and Rle the columns of the
# metagene and region_count functions
DF <- as(DF, "DataFrame")
if (!is.null(DF$region)) DF$region <- Rle(factor(DF$region))
if (!is.null(DF$transcript)) DF$transcript <- factor(DF$transcript)
if (!is.null(DF$position)) DF$position <- Rle(DF$position)
DF$experiment = Rle(factor(DF$experiment))
# add the metadata
metadata(DF)[[1]] <- get_info(ribo.object)$experiment.info[, c("experiment",
"total.reads")]
return(DF)
}
strip_rlefactor <- function(DF) {
# Helper method that strips the factors and prepares the DataFrame for plotting
if (!is.null(DF$region)) DF$region <- as.character(DF$region)
if (!is.null(DF$transcript)) DF$transcript <- as.character(DF$transcript)
if (!is.null(DF$position)) DF$position <- as.integer(DF$position)
if (!is.null(DF$length)) DF$length <- as.integer(DF$length)
DF$experiment <- as.character(DF$experiment)
return(DF)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.