Description Usage Arguments Details Value Examples
Print a table with a summary of the information on the most significant gene sets in QSarray.
1 2 |
QSarray |
A QSarray object |
number |
The number of gene sets to include in the table |
sort.by |
character vector; a list of metrics to be used to sort the gene sets in QSarray. Can be any combination and order of |
This method will return a table with a summary of the results of qusage.
A data frame containing the following columns:
pathway.name
- The name of the pathway
log.fold.change
- Average log2 fold change value of the genes in the pathway
p.Value
- The p-value for the gene set, as calculated using pdf.pVal
FDR
- The Benjamini-Hochberg False Discovery rate. Calculated using R's built-in p.adjust
method.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ##create example data
eset = matrix(rnorm(500*20),500,20, dimnames=list(1:500,1:20))
labels = c(rep("A",10),rep("B",10))
geneSets = list()
##create a number of gene sets with varying levels of differential expression.
for(i in 0:10){
genes = ((30*i)+1):(30*(i+1))
eset[genes,labels=="B"] = eset[genes,labels=="B"] + rnorm(1)
geneSets[[paste("Set",i)]] = genes
}
##calculate qusage results
results = qusage(eset,labels, "B-A", geneSets)
qsTable(results)
##show the first 5 sets, sorted by log fold change
qsTable(results, number=5, sort.by="logFC")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.