Nothing
#' Long to wide data format conversion
#'
#' Convert from a long data frame representation to a wide matrix representation
#'
#' @inheritParams proBatch
#'
#' @return \code{data_matrix} (\link{proBatch}) like matrix
#' (features in rows, samples in columns)
#'
#' @family matrix manipulation functions
#' @examples
#' proteome_matrix <- long_to_matrix(example_proteome)
#'
#' @export
#'
long_to_matrix <- function(df_long,
feature_id_col = 'peptide_group_label',
measure_col = 'Intensity',
sample_id_col = 'FullRunName',
qual_col = NULL,
qual_value = 2) {
casting_formula = as.formula(paste(feature_id_col, sample_id_col,
sep = " ~ "))
if(!is.null(qual_col)){
message('removing imputed values (requants)')
df_long = df_long %>%
mutate(!!sym(measure_col) := ifelse(!!sym(qual_col) == qual_value,
NA, !!sym(measure_col)))
}
proteome_wide = dcast(df_long, formula = casting_formula,
value.var = measure_col) %>%
column_to_rownames(feature_id_col) %>%
as.matrix()
return(proteome_wide)
}
#' Wide to long conversion
#'
#' Convert from wide matrix to a long data frame representation
#'
#' @inheritParams proBatch
#'
#' @param step normalization step (e.g. \code{Raw} or \code{Normalized}.
#' Useful if consecutive steps are compared in plots. Note
#' that in plots these are usually ordered alphabetically, so it's worth
#' naming with numbers, e.g. \code{1_raw}, \code{2_quantile}
#'
#' @return \code{df_long} (\link{proBatch}) like data frame
#'
#' @family matrix manipulation functions
#' @examples
#' proteome_long <- matrix_to_long(example_proteome_matrix,
#' example_sample_annotation)
#'
#' @export
#'
matrix_to_long <- function(data_matrix, sample_annotation = NULL,
feature_id_col = 'peptide_group_label',
measure_col = 'Intensity',
sample_id_col = 'FullRunName',
step = NULL){
df_long = data_matrix %>%
as.data.frame() %>%
rownames_to_column(var = feature_id_col) %>%
melt(id.var = feature_id_col, value.name = measure_col,
variable.name = sample_id_col, factorsAsStrings = FALSE)
if(!is.null(step)){
df_long = df_long %>%
mutate(Step = step)
}
if(!is.null(sample_annotation)){
df_long = check_sample_consistency(sample_annotation = sample_annotation,
sample_id_col = sample_id_col,
df_long = df_long,
batch_col = NULL, order_col = NULL,
facet_col = NULL, merge = FALSE)
}
return(df_long)
}
#' Prepare peptide annotation from long format data frame
#'
#' Create light-weight peptide annotation data frame
#' for selection of illustrative proteins
#'
#' @inheritParams proBatch
#'
#' @return data frame containing petpide annotations
#' @export
#' @examples
#' generated_peptide_annotation <- create_peptide_annotation(
#' example_proteome, feature_id_col = "peptide_group_label",
#' protein_col = c("Protein"))
#'
#' @seealso \code{\link{plot_peptides_of_one_protein}},
#' \code{\link{plot_protein_corrplot}}
create_peptide_annotation <- function(df_long,
feature_id_col = 'peptide_group_label',
protein_col = c("ProteinName", "Gene")){
if(!all(protein_col %in% names(df_long))){
stop(sprintf('Column %s is not in the data'), setdiff(names(df_long), protein_col))
}
peptide_annotation = df_long %>%
select(one_of(c(feature_id_col, protein_col))) %>%
distinct()
return(peptide_annotation)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.