Description Usage Arguments Value Examples
Normalization of raw (usually log-transformed) data. Normalization brings the samples to the same scale. Currently the following normalization functions are implemented: #'
Quantile normalization: 'quantile_normalize_dm()'. Quantile normalization of the data.
Median normalization: 'normalize_sample_medians_dm()'. Normalization by centering sample medians to global median of the data
Alternatively, one can call normalization function with 'normalize_data_dm()' wrapper.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | quantile_normalize_dm(data_matrix)
quantile_normalize_df(
df_long,
feature_id_col = "peptide_group_label",
sample_id_col = "FullRunName",
measure_col = "Intensity",
no_fit_imputed = TRUE,
qual_col = NULL,
qual_value = 2,
keep_all = "default"
)
normalize_sample_medians_dm(data_matrix)
normalize_sample_medians_df(
df_long,
feature_id_col = "peptide_group_label",
sample_id_col = "FullRunName",
measure_col = "Intensity",
no_fit_imputed = FALSE,
qual_col = NULL,
qual_value = 2,
keep_all = "default"
)
normalize_data_dm(
data_matrix,
normalize_func = c("quantile", "medianCentering"),
log_base = NULL,
offset = 1
)
normalize_data_df(
df_long,
normalize_func = c("quantile", "medianCentering"),
log_base = NULL,
offset = 1,
feature_id_col = "peptide_group_label",
sample_id_col = "FullRunName",
measure_col = "Intensity",
no_fit_imputed = TRUE,
qual_col = NULL,
qual_value = 2,
keep_all = "default"
)
|
data_matrix |
features (in rows) vs samples (in columns) matrix, with
feature IDs in rownames and file/sample names as colnames.
See "example_proteome_matrix" for more details (to call the description,
use |
df_long |
data frame where each row is a single feature in a single
sample. It minimally has a |
feature_id_col |
name of the column with feature/gene/peptide/protein
ID used in the long format representation |
sample_id_col |
name of the column in |
measure_col |
if |
no_fit_imputed |
(logical) whether to use imputed (requant) values, as flagged in
|
qual_col |
column to color point by certain value denoted
by |
qual_value |
value in |
keep_all |
when transforming the data (normalize, correct) - acceptable values: all/default/minimal (which set of columns be kept). |
normalize_func |
global batch normalization method ('quantile' or 'MedianCentering') |
log_base |
whether to log transform data matrix before normalization (e.g. 'NULL', '2' or '10') |
offset |
small positive number to prevent 0 conversion to |
the data in the same format as input (data_matrix
or
df_long
).
For df_long
the data frame stores the original values of
measure_col
in another column called "preNorm_intensity" if "intensity", and the
normalized values in measure_col
column.
1 2 3 4 5 6 7 8 9 | #Quantile normalization:
quantile_normalized_matrix <- quantile_normalize_dm(example_proteome_matrix)
#Median centering:
median_normalized_df <- normalize_sample_medians_df(example_proteome)
#Transform the data in one go:
quantile_normalized_matrix <- normalize_data_dm(example_proteome_matrix,
normalize_func = "quantile", log_base = 2, offset = 1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.