Nothing
pipeline.qualityCheck <- function()
{
dir.create(paste(files.name, "- Results/Data Overview"), showWarnings=FALSE)
plot.poly.density = function(subset=1:ncol(indata), col="#BEBEBE", main="", add=FALSE)
{
col.t=paste(col,"50",sep="")
if (add) par(new=TRUE)
plot(densities.y[subset[1],], type="n", xlim=range(densities.x), ylim=c(0, max(densities.y)), col="white", main=main, xlab="log Expression", ylab="Density")
lines(densities.x, colMeans(densities.y[subset,,drop=FALSE]), lwd=2, col=col)
polygon(
x= c(densities.x, rev(densities.x)),
y= c(colMeans(densities.y[subset,,drop=FALSE])+ apply(densities.y[subset,,drop=FALSE], 2, sd), rev(colMeans(densities.y[subset,,drop=FALSE]) - apply(densities.y[subset,,drop=FALSE], 2, sd))),
col=col.t, border=col)
}
mi = min(indata); ma = max(indata)
densities = apply(indata,2,function(x) density(x, from=mi, to=ma))
densities.y = t(sapply(densities, function(x) x$y))
densities.x = densities[[1]]$x
filename <- file.path(paste(files.name, "- Results"), "Data Overview", "Data Distribution.pdf")
util.info("Writing:", filename)
pdf(filename, 29.7/2.54, 21/2.54, useDingbats=FALSE)
par(mfrow=c(1,2))
plot(densities.x, densities.y[1,], main="Input data distribution", xlim=range(indata), ylim=range(densities.y), type="l", xlab="log Expression", ylab="Density")
dummy=sapply(densities, lines)
for (i in seq_along(unique(group.labels)))
plot.poly.density(subset=which(group.labels==unique(group.labels)[i]), col=groupwise.group.colors[i], main="", add=ifelse(i==1,FALSE,TRUE))
par(mfrow=c(2,3))
for (i in seq_along(unique(group.labels)))
plot.poly.density(subset=which(group.labels==unique(group.labels)[i]), col=groupwise.group.colors[i], main=unique(group.labels)[i])
indata.sample.sd <- apply(indata, 2, sd)
indata.sample.mean <- colMeans(indata)
Q13 <- quantile( indata.sample.mean, c(0.25,0.75) )
IQR1.mean <- c( Q13[1] - 1*diff( Q13 ), Q13[2] + 1*diff( Q13 ) )
IQR3.mean <- c( Q13[1] - 3*diff( Q13 ), Q13[2] + 3*diff( Q13 ) )
Q13 <- quantile( indata.sample.sd, c(0.25,0.75) )
IQR1.sd <- c( Q13[1] - 1*diff( Q13 ), Q13[2] + 1*diff( Q13 ) )
IQR3.sd <- c( Q13[1] - 3*diff( Q13 ), Q13[2] + 3*diff( Q13 ) )
outlier <- names( which( indata.sample.mean < IQR1.mean[1] |
indata.sample.mean > IQR1.mean[2] |
indata.sample.sd < IQR1.sd[1] |
indata.sample.sd > IQR1.sd[2] ) )
par(mfrow=c(1,1), mar=c(5,4,3,2))
plot( indata.sample.mean, indata.sample.sd, pch=16, col=group.colors, xlab="mean expression level", ylab="standard deviation of expression" )
abline( v=IQR1.mean, col="gray20", lty=2 )
abline( v=IQR3.mean, col="gray20", lty=3 )
abline( h=IQR1.sd, col="gray20", lty=2 )
abline( h=IQR3.sd, col="gray20", lty=3 )
legend("topright",c("1x IQR","3x IQR"),lty=c(2,3),col="gray20")
if(length(outlier)>0) text(indata.sample.mean[outlier],indata.sample.sd[outlier]+diff(range(indata.sample.sd))*0.017,outlier)
par(mfrow=c(2,1),mar=c(5,3,3,2))
barplot(indata.sample.mean, col=group.colors, main="Sample mean expression", names.arg=if (ncol(indata)<80) colnames(indata) else rep("",ncol(indata)), las=2, cex.main=1, cex.lab=1, cex.axis=0.8, cex.names=0.6, border = ifelse(ncol(indata)<80,"black",NA), ylim=range(indata.sample.mean)*c(0.99,1.01), xpd=FALSE)
box()
if (length(unique(group.labels)) > 1)
{
mean.boxes = by(indata.sample.mean, group.labels, c)[unique(group.labels)]
par(mar=c(5,3,0,2))
boxplot(mean.boxes, col=groupwise.group.colors, las=2, main="", cex.main=1, cex.axis=0.8, xaxt="n")
axis(1, seq_along(groupwise.group.colors), unique(group.labels), las=2, cex.axis=0.8)
}
par(mar=c(5,3,3,2))
barplot(indata.sample.sd, col=group.colors, main="Sample expression standard deviation", names.arg=if (ncol(indata)<80) colnames(indata) else rep("",ncol(indata)), las=2, cex.main=1, cex.lab=1, cex.axis=0.8, cex.names=0.6, border = ifelse(ncol(indata)<80,"black",NA), ylim=range(indata.sample.sd)*c(0.99,1.01), xpd=FALSE)
box()
if (length(unique(group.labels)) > 1)
{
mean.boxes = by(indata.sample.sd, group.labels, c)[unique(group.labels)]
par(mar=c(5,3,0,2))
boxplot(mean.boxes, col=groupwise.group.colors, las=2, main="", cex.main=1, cex.axis=0.8, xaxt="n")
axis(1, seq_along(groupwise.group.colors), unique(group.labels), las=2, cex.axis=0.8)
}
environment(pipeline.affymetrixQualityCheck) <- environment()
pipeline.affymetrixQualityCheck()
dev.off()
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.