Nothing
pipeline.differenceAnalyses = function()
{
if (length(unique(group.labels)) >= 2 && length(unique(group.labels)) <= 8 )
{
differences.list <- apply(combn(unique(group.labels), 2), 2, function(x)
{
list(which(group.labels==x[1]), which(group.labels==x[2]))
})
names(differences.list) <-
apply(combn(unique(group.labels), 2), 2, paste, collapse=" vs ")
} else
{
differences.list <- list()
util.warn("Skipped pairwise group analyses: too few or many groups")
}
differences.list <- c( preferences$pairwise.comparison.list, differences.list )
singleton.differences <- sapply( differences.list, function(x) length(x[[1]])<2 || length(x[[2]])<2 )
if( any(singleton.differences) )
{
differences.list <- differences.list[which(!singleton.differences)]
util.warn("Skipped difference analysis for groups with only one sample")
}
if (length(differences.list) == 0)
{
return()
}
dir.create(paste(files.name, "- Results/Summary Sheets - Differences"), showWarnings=FALSE)
dir.create(paste(files.name, "- Results/Summary Sheets - Differences/CSV Sheets"), showWarnings=FALSE)
WAD.g.m <- matrix(NA, nrow(indata), length(differences.list),
dimnames=list(rownames(indata), names(differences.list)))
t.g.m <- matrix(NA, nrow(indata), length(differences.list),
dimnames=list(rownames(indata), names(differences.list)))
p.g.m <- matrix(NA, nrow(indata), length(differences.list),
dimnames=list(rownames(indata), names(differences.list)))
fdr.g.m <- matrix(NA, nrow(indata), length(differences.list),
dimnames=list(rownames(indata), names(differences.list)))
Fdr.g.m <- matrix(NA, nrow(indata), length(differences.list),
dimnames=list(rownames(indata), names(differences.list)))
n.0.m <- rep(NA, length(differences.list))
names(n.0.m) <- names(differences.list)
perc.DE.m <- rep(NA, length(differences.list))
names(perc.DE.m) <- names(differences.list)
indata.d <- matrix(NA, nrow(indata), length(differences.list),
dimnames=list(rownames(indata), names(differences.list)))
metadata.d <- matrix(NA, nrow(metadata), length(differences.list),
dimnames=list(rownames(metadata), names(differences.list)))
for (d in seq_along(differences.list))
{
samples.indata <-
list(differences.list[[d]][[1]], differences.list[[d]][[2]])
indata.d[,d] <- rowMeans(indata[,samples.indata[[1]],drop=FALSE]) -
rowMeans(indata[,samples.indata[[2]],drop=FALSE])
metadata.d[,d] <- rowMeans(metadata[,samples.indata[[1]],drop=FALSE]) -
rowMeans(metadata[,samples.indata[[2]],drop=FALSE])
n <- length(samples.indata[[1]])
m <- length(samples.indata[[2]])
S2.x <- apply(indata[,samples.indata[[1]],drop=FALSE],1,var)
S2.x[which(S2.x==0)] <- min(S2.x[which(S2.x!=0)])
S2.y <- apply(indata[,samples.indata[[2]],drop=FALSE],1,var)
S2.y[which(S2.y==0)] <- min(S2.y[which(S2.y!=0)])
t.g.m[,d] <- indata.d[,d] / sqrt( S2.x/n + S2.y/m )
df <- ( S2.x/n + S2.y/m )^2 / ( S2.x^2 / (n^2*(n-1)) + S2.y^2 / (m^2*(m-1)) )
p.g.m[,d] <- 2 - 2*pt( abs(t.g.m[,d]), df )
suppressWarnings({
try.res <- try({
fdrtool.result <- fdrtool(p.g.m[,d], statistic="pvalue", verbose=FALSE, plot=FALSE)
}, silent=TRUE)
})
if (!is(try.res,"try-error"))
{
fdr.g.m[,d] <- fdrtool.result$lfdr
Fdr.g.m[,d] <- fdrtool.result$qval
n.0.m[d] <- fdrtool.result$param[1,"eta0"]
perc.DE.m[d] <- 1 - n.0.m[d]
} else
{
fdr.g.m[,d] <- p.g.m[,d]
Fdr.g.m[,d] <- p.g.m[,d]
n.0.m[d] <- 0.5
perc.DE.m[d] <- 0.5
}
delta.e.g.m <- indata.d[,d]
w.g.m <- (delta.e.g.m - min(delta.e.g.m)) / (max(delta.e.g.m) - min(delta.e.g.m))
WAD.g.m[,d] <- w.g.m * delta.e.g.m
}
indata <- indata.d
colnames(indata) <- names(differences.list)
metadata <- metadata.d
colnames(metadata) <- names(differences.list)
group.labels <- names(differences.list)
names(group.labels) <- names(differences.list)
group.colors <- rep("gray20",length(differences.list))
names(group.colors) <- names(differences.list)
output.paths <- c("CSV" = paste(files.name, "- Results/Summary Sheets - Differences/CSV Sheets"),
"Summary Sheets Samples"= paste(files.name, "- Results/Summary Sheets - Differences/Reports"))
util.call(pipeline.detectSpotsSamples, environment())
preferences$activated.modules$geneset.analysis.exact <- FALSE
if (preferences$activated.modules$geneset.analysis)
{
if (ncol(t.g.m) == 1)
{
# crack for by command, which requires >=2 columns
t.g.m <- cbind(t.g.m, t.g.m)
}
util.call(pipeline.genesetStatisticSamples, environment())
}
util.call(pipeline.geneLists, environment())
util.call(pipeline.summarySheetsSamples, environment())
util.call(pipeline.htmlDifferencesSummary, environment())
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.