Nothing
pipeline.geneLists <- function()
{
#### Gene Localization Table ####
o <- order(som.result$feature.BMU)
out <- data.frame(ID=rownames(indata)[o],
Symbol=gene.info$names[o],
MeanExpression=indata.gene.mean[o],
Metagene=gene.info$coordinates[o],
Chromosome=paste( gene.info$chr.name[rownames(indata)[o]], gene.info$chr.band[rownames(indata)[o]]),
Description=gene.info$descriptions[o])
filename <- file.path(paste(files.name, "- Results"), "CSV Sheets", "Gene localization.csv")
util.info("Writing:", filename)
csv.function(out, filename, row.names=FALSE)
#### Sample GSZ Table ####
filename <- file.path( output.paths["CSV"], "Sample GSZ scores.csv")
util.info("Writing:", filename)
csv.function(samples.GSZ.scores, filename)
if(ncol(indata) < 1000)
{
dirnames <- c("global"=file.path(output.paths["CSV"], "Gene Lists - Global"),
# "local"=file.path(output.paths["CSV"], "Gene Lists - Local"),
"set"=file.path(output.paths["CSV"], "Gene Set Lists - Global"))
for (dirname in dirnames)
{
dir.create(dirname, showWarnings=FALSE)
}
#### Global Gene Lists ####
util.info("Writing:", file.path(dirnames["global"], "*.csv"))
genes.spot.assoc <- rep("", nrow(indata) )
names(genes.spot.assoc) <- rownames(indata)
spot.list <- get(paste("spot.list.",preferences$standard.spot.modules,sep=""))
for( i in seq_along(spot.list$spots) ) genes.spot.assoc[ spot.list$spots[[i]]$genes ] <- names(spot.list$spots)[i]
for (m in 1:ncol(indata))
{
o <- order(p.g.m[,m])
out <- data.frame(Rank=c(1:nrow(indata)),
ID=rownames(indata)[o],
Symbol=gene.info$names[o])
out <- cbind(out,
logFC=indata[o, m],
WAD=WAD.g.m[o, m],
T.Score=t.g.m[o, m],
p.value=paste(p.g.m[o, m]," ."),
fdr=paste(fdr.g.m[o, m]," ."),
Fdr=paste(Fdr.g.m[o, m]," ."),
Metagene=gene.info$coordinates[o],
Spot=genes.spot.assoc[o],
Chromosome=paste( gene.info$chr.name[rownames(indata)[o]], gene.info$chr.band[rownames(indata)[o]]),
Description=gene.info$descriptions[o])
basename <- paste(make.names(colnames(indata)[m]), ".csv", sep="")
f <- file(file.path(dirnames["global"], basename), "w")
writeLines("Sample Summary:", f)
writeLines("", f)
writeLines(paste("%DE:" ,"", round(perc.DE.m[colnames(indata)[m]], 2), sep=";"), f)
writeLines(paste("#genes with fdr < 0.2" ,"", length(which(fdr.g.m[,m] < 0.2)) , sep=";"), f)
writeLines(paste("#genes with fdr < 0.1" ,"", length(which(fdr.g.m[,m] < 0.1)) , sep=";"), f)
writeLines(paste("#genes with fdr < 0.05" ,"", length(which(fdr.g.m[,m] < 0.05)) , sep=";"), f)
writeLines(paste("#genes with fdr < 0.01" ,"", length(which(fdr.g.m[,m] < 0.01)) , sep=";"), f)
writeLines("", f)
writeLines(paste("<FC> =", round(mean(indata[,m]), 2)) ,f)
writeLines(paste("<t-score> =", round(mean(t.g.m[,m]), 2)) ,f)
writeLines(paste("<p-value> =", round(10 ^ mean(log10(p.g.m[,m])), 2)) ,f)
writeLines(paste("<fdr> =", round(mean(fdr.g.m[,m]), 2)) ,f)
writeLines("", f); writeLines("", f); writeLines("", f)
writeLines("Gene Statistics", f)
writeLines("", f)
csv.function(out, file=f, row.names=FALSE)
close(f)
}
#### Gene Set Lists ####
if (preferences$activated.modules$geneset.analysis)
{
util.info("Writing:", file.path(dirnames["set"], "*.csv"))
for (m in 1:ncol(indata))
{
gs.gsz <- spot.list.samples[[m]]$GSZ.score
pos.gs.gsz <- round(sort(gs.gsz[which(gs.gsz>0)],decreasing=TRUE), 8)
neg.gs.gsz <- round(sort(gs.gsz[which(gs.gsz<0)],decreasing=FALSE), 8)
pos.gs.p <- rep("",length(pos.gs.gsz))
neg.gs.p <- rep("",length(neg.gs.gsz))
pos.gs.fdr <- rep("",length(pos.gs.gsz))
neg.gs.fdr <- rep("",length(neg.gs.gsz))
if(preferences$activated.modules$geneset.analysis.exact)
{
pos.gs.p <- spot.list.samples[[m]]$GSZ.p.value[names(pos.gs.gsz)]
neg.gs.p <- spot.list.samples[[m]]$GSZ.p.value[names(neg.gs.gsz)]
if(ncol(indata)<100)
{
pos.gs.fdr <- fdrtool(pos.gs.p,statistic="pvalue",verbose=FALSE,plot=FALSE)$lfdr
neg.gs.fdr <- fdrtool(neg.gs.p,statistic="pvalue",verbose=FALSE,plot=FALSE)$lfdr
}
}
pos.gs.gsz <- c(pos.gs.gsz, rep(0, max(0, length(neg.gs.gsz) - length(pos.gs.gsz))))
neg.gs.gsz <- c(neg.gs.gsz, rep(0, max(0, length(pos.gs.gsz) - length(neg.gs.gsz))))
pos.gs.p <- c(pos.gs.p, rep(1, max(0, length(neg.gs.p) - length(pos.gs.p))))
neg.gs.p <- c(neg.gs.p, rep(1, max(0, length(pos.gs.p) - length(neg.gs.p))))
pos.gs.fdr <- c(pos.gs.fdr, rep(1, max(0, length(neg.gs.fdr) - length(pos.gs.fdr))))
neg.gs.fdr <- c(neg.gs.fdr, rep(1, max(0, length(pos.gs.fdr) - length(neg.gs.fdr))))
gs.info <- data.frame("Rank"=c(seq_along(pos.gs.gsz)),
"Upregulated"=names(pos.gs.gsz),
"GSZ"=pos.gs.gsz,
"p.value"=paste(pos.gs.p," ."),
"fdr"=paste(pos.gs.fdr," ."),
"."=rep("",length(pos.gs.gsz)),
"Downregulated"=names(neg.gs.gsz),
"GSZ."=neg.gs.gsz,
"p.value."=paste(neg.gs.p," ."),
"fdr."=paste(neg.gs.fdr," ."))
basename <- paste(make.names(colnames(indata)[m]), ".csv", sep="")
csv.function(gs.info, file.path(dirnames["set"], basename), row.names=FALSE)
}
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.