Nothing
pipeline.calcStatistics <- function()
{
util.info("Calculating Single Gene Statistic")
WAD.g.m <<- matrix(NA, nrow(indata), ncol(indata), dimnames=list(rownames(indata), colnames(indata)))
for (m in 1:ncol(indata))
{
delta.e.g.m <- indata[,m]
w.g.m <- (delta.e.g.m - min(delta.e.g.m)) / (max(delta.e.g.m) - min(delta.e.g.m))
WAD.g.m[,m] <<- w.g.m * delta.e.g.m
}
# Calculate T-score and significance
sd.g.m <- matrix(NA, nrow(indata), ncol(indata), dimnames=list(rownames(indata), colnames(indata)))
t.g.m <<- matrix(NA, nrow(indata), ncol(indata), dimnames=list(rownames(indata), colnames(indata)))
p.g.m <<- matrix(NA, nrow(indata), ncol(indata), dimnames=list(rownames(indata), colnames(indata)))
n.0.m <<- rep(NA, ncol(indata))
names(n.0.m) <<- colnames(indata)
perc.DE.m <<- rep(NA, ncol(indata))
names(perc.DE.m) <<- colnames(indata)
fdr.g.m <<- matrix(NA, nrow(indata), ncol(indata), dimnames=list(rownames(indata), colnames(indata)))
Fdr.g.m <<- matrix(NA, nrow(indata), ncol(indata), dimnames=list(rownames(indata), colnames(indata)))
o <- order(indata.gene.mean)
sdo <- apply(indata, 1, sd)[o]
col <- Get.Running.Average(sdo, min(200, round(nrow(indata) * 0.02)))
col[which(is.nan(col))] <- 0.0000000001
col[which(col == 0)] <- 0.0000000001
for (i in seq(length(col)-1, 1))
{
col[i] <- max(col[i], col[i+1])
}
sd.g.m[o,] <- col
t.g.m <<- apply(indata, 2, function(x, root)
{
return(root * x / sd.g.m[,1])
}, sqrt(ncol(indata)))
### calculate significance and fdr ###
for (m in 1:ncol(indata))
{
# p.g.m[,m] <<- 2 - 2*pt( abs(t.g.m[,m]), ncol(indata) - 1 )
suppressWarnings({
try.res <- try({
# fdrtool.result <- fdrtool(p.g.m[,m], statistic="pvalue", verbose=FALSE, plot=FALSE)
fdrtool.result <- fdrtool(t.g.m[,m], verbose=FALSE, plot=FALSE)
}, silent=TRUE)
})
if (!is(try.res,"try-error"))
{
p.g.m[,m] <<- fdrtool.result$pval
fdr.g.m[,m] <<- fdrtool.result$lfdr
Fdr.g.m[,m] <<- fdrtool.result$qval
n.0.m[m] <<- fdrtool.result$param[1,"eta0"]
perc.DE.m[m] <<- 1 - n.0.m[m]
} else # happens for eg phenotype data
{
p.g.m[,m] <<- order(indata[,m]) / nrow(indata)
fdr.g.m[,m] <<- p.g.m[,m]
Fdr.g.m[,m] <<- p.g.m[,m]
n.0.m[m] <<- 0.5
perc.DE.m[m] <<- 1 - n.0.m[m]
}
}
### Metagenes ###
util.info("Calculating Metagene Statistic")
t.m <<- p.m <<-
matrix(NA, preferences$dim.1stLvlSom ^ 2, ncol(indata),
dimnames=list(1:(preferences$dim.1stLvlSom ^ 2), colnames(indata)))
t.m.help <- do.call(rbind, by(t.g.m, som.result$feature.BMU, colMeans))
t.m[rownames(t.m.help),] <<- t.m.help
for (m in 1:ncol(indata))
{
suppressWarnings({
try.res <- try({
fdrtool.result <- fdrtool(as.vector(na.omit(t.m[,m])), verbose=FALSE, plot=FALSE)
}, silent=TRUE)
})
if( !is(try.res,"try-error") )
{
p.m[which(!is.na(t.m[,m])),m] <<- fdrtool.result$pval
} else # happens for eg phenotype data
{
p.m[which(!is.na(t.m[,m])),m] <<- t.m[which(!is.na(t.m[,m])),m] / max(t.m[,m], na.rm=TRUE)
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.