Nothing
## ----setup, include=FALSE-----------------------------------------------------
library(knitr)
# Global options
opts_chunk$set(fig.path="fig/")
## ----NetResponse1, warning=FALSE, message=FALSE-------------------------------
library(netresponse)
# Generate simulated data
res <- generate.toydata(Dim = 3, Nc = 3, Ns = 200, sd0 = 3, rgam.shape = 1, rgam.scale = 1)
D <- res$data
component.means <- res$means
component.sds <- res$sds
sample2comp <- res$sample2comp
# Use fully connected network
network <- matrix(rep(1, 9), nrow = 3)
# Fit NetResponse model
# Various network formats are supported, see help(detect.responses) for
# details. With large data sets, consider the 'speedup' option.
set.seed(4243)
res <- detect.responses(D, network, mixture.method = "vdp", pca.basis = TRUE)
# List subnets (each is a list of nodes)
subnet.id <- names(get.subnets(res))[[1]]
## ----NetResponse2, fig.width=6, fig.height=6, warning=FALSE, message=FALSE, fig.show="hide", eval=FALSE----
# library(ggplot2)
# vis <- plot_responses(res, subnet.id, plot_mode = "pca")
## ----NetResponse2b, fig.width=6, fig.height=5, warning=FALSE, message=FALSE, eval=FALSE----
# # Modify the resulting ggplot2 object to enhance visualization
# p <- vis$p # Pick the ggplot2 object from results
# p <- p + geom_point(size = 3) # Modify point size
# print(p)
## ----NetResponse3, fig.width=8, fig.height=8, warning=FALSE, message=FALSE, eval=FALSE----
# vis <- plot_responses(res, subnet.id, plot_mode = "network")
## ----NetResponse4, fig.width=8, fig.height=8, warning=FALSE, message=FALSE, eval=FALSE----
# vis <- plot_responses(res, subnet.id, plot_mode = "heatmap")
## ----NetResponse5, fig.width=8, fig.height=8, warning=FALSE, message=FALSE, eval=FALSE----
# vis <- plot_responses(res, subnet.id, plot_mode = "boxplot_data")
## ----NetResponse7, fig.width=8, fig.height=8, warning=FALSE, message=FALSE, eval=FALSE----
# plot_scale(vis$breaks, vis$palette, two.sided = TRUE)
## ----NetResponse8, warning=FALSE, message=FALSE-------------------------------
subnet.id <- 'Subnet-1'
# Sample - response probabilities (soft cluster assignment)
response.probs <- sample2response(res, subnet.id)
tail(round(response.probs, 6))
# Sample - response hard assignments
hard.clusters <- response2sample(res, subnet.id)
print(hard.clusters)
## ----NetResponse9, warning=FALSE, message=FALSE-------------------------------
params <- get.model.parameters(res, subnet.id)
names(params)
## ----vdp, warning=FALSE, message=FALSE----------------------------------------
# Generate 2-dimensional simulated data with 3 clusters
res <- generate.toydata(Dim = 2, Nc = 3, Ns = 200, sd0 = 3, rgam.shape = 1, rgam.scale = 1)
D <- res$data
real.means <- res$means
real.sds <- res$sds
real.sample2comp <- res$sample2comp
# Infinite Gaussian mixture model with
# Variational Dirichlet Process approximation
mixt <- vdp.mixt( D )
# Centroids of the detected Gaussian components
estimated.means <- mixt$posterior$centroids
# The colors denote the known clusters
# The blue ball denotes the original (known) cluster centroids and
# the triangle denotes the estimated centroids
plot(D, col = real.sample2comp, pch = 1)
points(real.means, col = "blue", pch = 16, cex = 2)
points(estimated.means, col = "blue", pch = 17, cex = 2)
# Hard mixture component assignment for each sample
estimated.sample2comp <- apply(mixt$posterior$qOFz, 1, which.max)
# Compare known and estimated mixture components
# (note that cluster indices may have switched due to unidentifiability)
# nearly all samples have one-to-one match between the real and estimated
# clusters
head(table(estimated.sample2comp, real.sample2comp))
## ----cite, warning=FALSE, message=FALSE---------------------------------------
citation("netresponse")
## ----version, warning=FALSE, message=FALSE------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.