R/enrichment.list.factor.minimal.R

Defines functions enrichment.list.factor.minimal

Documented in enrichment.list.factor.minimal

#' @title enrichment.list.factor
#' @description Orders the responses by association strength (enrichment score) to a given sample set. For instance, if the samples correspond to a particular experimental factor, this function can be used to prioritize the responses according to their association strength to this factor.
#' @param groupings List of groupings. Each model should have a sample-cluster assignment matrix qofz.
#' @param method 'hypergeometric' measures enrichment of factor levels in this
#'   response; 'precision' measures response purity for each factor level;
#'   'dependency' measures logarithm of the joint density between response and
#'   factor level vs. their marginal densities: log(P(r,s)/(P(r)P(s)))
#' @param verbose Follow progress by intermediate messages.
#' @param annotation.vector annotation vector
#' @param level level
#' @return A data frame which gives a data
#'   frame of responses ordered by enrichment score for the investigated sample.
#'   The model, response id and enrichment score are shown. The method field
#'   indicates the enrichment calculation method. The sample field lists the
#'   samples et for which the enrichments were calculated. The info field lists
#'   additional information on enrichment statistics.
#' @author Leo Lahti \email{leo.lahti@@iki.fi}
#' @references See citation('netresponse') for citation details.
#' @keywords utilities
#' @importFrom qvalue qvalue
#' @export
#' @examples res <- enrichment.list.factor.minimal(groupings = NULL,
#'     method = NULL,
#'     annotation.vector = NULL,
#'     level = NULL)
#'
enrichment.list.factor.minimal <- function(groupings, method, verbose = FALSE, annotation.vector, 
    level) {

    if (is.null(method)) {return(NULL)}
    
    # groupings, level.samples, method = method
    level.samples <- names(annotation.vector)[annotation.vector %in% level]
    
    if (is.null(names(groupings))) {
        names(groupings) <- seq_len(length(groupings))
    }
    
    # Check enrichment in the selected responses
    enrichment.info <- list()
    cnt <- 0
    for (subnet.id in names(groupings)) {
        
        groupings.list <- listify.groupings(groupings[[subnet.id]])
        
        for (response in names(groupings.list)) {
            
            # In enrichment calculations use only those samples where annotations are
            # available
            total.samples <- intersect(unlist(groupings.list), names(which(!is.na(annotation.vector))))
            response.samples <- intersect(groupings.list[[response]], names(which(!is.na(annotation.vector))))
            
            enr <- response.enrichment(total.samples, response.samples, level.samples, 
                method)
            
            cnt <- cnt + 1
            enrichment.info[[cnt]] <- c(model = subnet.id, mode = response, enrichment.score = enr$score, 
                enr$info)
            
        }
    }
    
    if (verbose) {
        message("Groupings checked.")
    }
    
    if (length(enrichment.info) > 0) {
        
        enrichment.info <- enrichment.info[sapply(enrichment.info, function(ei) {
            length(ei) > 2
        })]
        
        enr <- as.data.frame(t(sapply(enrichment.info, identity)))
        
        if ("pvalue" %in% colnames(enr)) {
            
            if (length(enr$pvalue) > 100) {
                # calculate q-values
                enr$qvalue <- qvalue(as.numeric(as.character(enr$pvalue)))$qvalues
            } else if (length(enr$pvalue) > 10) {
                enr$qvalue <- qvalue(as.numeric(as.character(enr$pvalue)),
                pi0.method = "bootstrap", fdr.level = 0.25)$qvalues
            } else {
                
                warning("Not enough p-values for q-value estimation")
                enr$qvalue <- rep(NA, length(enr$pvalue))
                
            }
        }
        
        if (nrow(enr) == 0) {
            return(NULL)
        }
        
        enr[, 3:ncol(enr)] <- apply(enr[, 3:ncol(enr)], 2, as.numeric)
        
        if ("enrichment.score" %in% names(enr)) {
            
            enr <- enr[order(enr$enrichment.score, decreasing = TRUE), ]
            
            enr[["model"]] <- as.character(enr[["model"]])
            
            tmp <- list(ordered.responses = enr, method = method, sample = level.samples)
            
            return(tmp)
            
        } else {
            return(NULL)
        }
        
    } else {
        return(NULL)
    }
    
}

Try the netresponse package in your browser

Any scripts or data that you put into this service are public.

netresponse documentation built on Nov. 8, 2020, 5:04 p.m.