Nothing
#' Cyclic Loess normalization for Hi-C data
#'
#' @param hicexp A hicexp object
#' @param iterations The number of iterations (cycles)
#' of loess normalization to perform. Defaults to 3.
#' @param span The span for loess normalization. Defaults to
#' NA indicating that span will be automatically calculated
#' using generalized cross validation.
#' @param parallel Logical. Should parallel processing be used?
#' @param verbose Logical. Should messages about loess normalization
#' be printed to the screen.
#'
#' @details This function performs cyclic loess normalization
#' on a Hi-C experiment. multiHiCcompare's cyclic loess procedure
#' is a modified version of Ballman's (2004) cyclic loess and
#' the joint loess normalization used in the original HiCcompare.
#' For each unique pair of samples in the hicexp object an MD plot
#' is generated. A loess curve is fit to the MD plot and then the
#' fitted values are used to adjust the data. This is performed on
#' all unique pairs and then repeated until convergence.
#' @return A hicexp object that has been normalized.
#' @export
#' @importFrom BiocParallel bplapply
#' @importFrom HiCcompare MD.plot1
#' @importFrom data.table rbindlist
#' @importFrom stats aggregate loess loess.control model.matrix
#' optimize p.adjust predict update D loess.smooth
#' @importFrom utils combn read.table tail write.table
#' @examples
#' #' data("hicexp2")
#' hicexp2 <- cyclic_loess(hicexp2, span = 0.7)
cyclic_loess <- function(hicexp, iterations = 3, span = NA,
parallel = FALSE, verbose = FALSE) {
# check if data already normalized
if (normalized(hicexp)) {
stop("Data has already been normalized.")
}
# check span input
if (!is.na(span)) {
if (!is.numeric(span) || span <= 0 || span > 1) {
stop("span must be set to NA or a value between 0 and 1")
}
}
# check iterations input
if (iterations != 3L) {
warning("Typically it takes about 3 iterations for cyclic
loess to converge.")
}
# check for missing values
if (any(is.na(hic_table(hicexp)))) {
stop("hic_table contains missing values!")
}
# split up data by condition and perform cyclic loess
normalized <- .loess_condition(hic_table(hicexp),
iterations = iterations, parallel = parallel,
verbose = verbose, span = span)
# sort hic_table
normalized <- normalized[order(chr, region1, region2),]
# put back into hicexp object
slot(hicexp, "hic_table") <- normalized
slot(hicexp, "normalized") <- TRUE
return(hicexp)
}
# background functions
### Perform cyclic loess for a condition
.loess_condition <- function(hic_table, iterations, parallel, verbose, span) {
# split up data by chr
table_list <- split(hic_table, hic_table$chr)
# plug into parallelized loess function
normalized <- smartApply(parallel, table_list, .cloess,
iterations = iterations, verbose = verbose,
span = span)
# recombine tables
normalized <- data.table::rbindlist(normalized)
return(normalized)
}
# perform cyclic loess on a table
.cloess <- function(tab, iterations, verbose, span, degree = 1,
loess.criterion = "gcv") {
# make matrix of IFs
IF_mat <- as.matrix(tab[, -c("chr", "region1", "region2", "D"), with = FALSE])
# make index matrix
idx_mat <- IF_mat
idx_mat[idx_mat != 0] <- 1
# log the matrix
IF_mat <- log2(IF_mat + 1)
n <- ncol(IF_mat)
# begin cyclic loess
for (i in seq(from = 1, to = iterations)) {
for(j in seq(from = 1, to = (n-1))) {
for (k in seq(from = (j+1), to = n)) {
# # get rows with zeros
# zeros1 <- IF_mat[,k] == 0
# zeros2 <- IF_mat[,j] == 0
# zeros <- zeros1 | zeros2
# M <- IF_mat[!zeros, k] - IF_mat[!zeros, j]
# D <- tab$D[!zeros]
M <- IF_mat[,k] - IF_mat[,j]
D <- tab$D
if (is.na(span)) {
l <- .loess.as(x = D, y = M, degree = degree,
criterion = loess.criterion,
control = loess.control(surface = "interpolate",
statistics = "approximate",
trace.hat = "approximate"))
} else {
l <- .loess.as(x = D, y = M, degree = degree, user.span = span,
criterion = loess.criterion,
control = loess.control(surface = "interpolate",
statistics = "approximate",
trace.hat = "approximate"))
}
# calculate gcv and AIC
traceL <- l$trace.hat
sigma2 <- sum(l$residuals^2)/(l$n - 1)
aicc <- log(sigma2) + 1 + 2 * (2 * (traceL + 1))/(l$n - traceL -2)
gcv <- l$n * sigma2/(l$n - traceL)^2
# print the span picked by gcv
if (verbose) {
message("Span for loess: ", l$pars$span)
message("GCV for loess: ", gcv)
message("AIC for loess: ", aicc)
}
# adjust IFs
# IF_mat[!zeros,j] <- IF_mat[!zeros,j] + l$fitted/2
# IF_mat[!zeros,k] <- IF_mat[!zeros,k] - l$fitted/2
IF_mat[,j] <- IF_mat[,j] + l$fitted/2
IF_mat[,k] <- IF_mat[,k] - l$fitted/2
}
}
}
# anti-log IFs
IF_mat <- (2^IF_mat) - 1
# reset zeros
IF_mat <- IF_mat * idx_mat
# set negative values to 0
IF_mat[IF_mat < 0] <- 0
# fix any potential Infs or NaN's
IF_mat[is.nan(IF_mat)] <- 0
IF_mat[is.infinite(IF_mat)] <- 0
# recombine table
tab <- cbind(tab[, 1:4, with = FALSE], IF_mat)
return(tab)
}
# loess with Automatic Smoothing Parameter Selection adjusted possible
# range of smoothing originally from fANCOVA package
.loess.as <- function(x, y, degree = 1, criterion = c("aicc", "gcv"),
family = c("gaussian",
"symmetric"), user.span = NULL, plot = FALSE, ...) {
criterion <- match.arg(criterion)
family <- match.arg(family)
x <- as.matrix(x)
data.bind <- data.frame(x = x, y = y)
if (ncol(x) == 1) {
names(data.bind) <- c("x", "y")
} else {
names(data.bind) <- c("x1", "x2", "y")
}
opt.span <- function(model, criterion = c("aicc", "gcv"),
span.range = c(0.01, 0.9)) {
as.crit <- function(x) {
span <- x$pars$span
traceL <- x$trace.hat
sigma2 <- sum(x$residuals^2)/(x$n - 1)
aicc <- log(sigma2) + 1 + 2 * (2 * (traceL + 1))/(x$n - traceL -
2)
gcv <- x$n * sigma2/(x$n - traceL)^2
result <- list(span = span, aicc = aicc, gcv = gcv)
return(result)
}
criterion <- match.arg(criterion)
fn <- function(span) {
mod <- stats::update(model, span = span)
as.crit(mod)[[criterion]]
}
result <- optimize(fn, span.range)
return(list(span = result$minimum, criterion = result$objective))
}
if (ncol(x) == 1) {
if (is.null(user.span)) {
fit0 <- loess(y ~ x, degree = degree, family = family, data = data.bind,
...)
span1 <- opt.span(fit0, criterion = criterion)$span
} else {
span1 <- user.span
}
fit <- loess(y ~ x, degree = degree, span = span1, family = family,
data = data.bind, ...)
} else {
if (is.null(user.span)) {
fit0 <- loess(y ~ x1 + x2, degree = degree, family = family,
data.bind, ...)
span1 <- opt.span(fit0, criterion = criterion)$span
} else {
span1 <- user.span
}
fit <- loess(y ~ x1 + x2, degree = degree, span = span1, family = family,
data = data.bind, ...)
}
if (plot) {
if (ncol(x) == 1) {
m <- 100
x.new <- seq(min(x), max(x), length.out = m)
fit.new <- predict(fit, data.frame(x = x.new))
plot(x, y, col = "lightgrey", xlab = "x", ylab = "m(x)", ...)
lines(x.new, fit.new, lwd = 1.5, ...)
} else {
m <- 50
x1 <- seq(min(data.bind$x1), max(data.bind$x1), len = m)
x2 <- seq(min(data.bind$x2), max(data.bind$x2), len = m)
x.new <- expand.grid(x1 = x1, x2 = x2)
fit.new <- matrix(predict(fit, x.new), m, m)
persp(x1, x2, fit.new, theta = 40, phi = 30, ticktype = "detailed",
xlab = "x1", ylab = "x2", zlab = "y", col = "lightblue",
expand = 0.6)
}
}
return(fit)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.