Nothing
#' @import methods
#' @importFrom Biobase exprs pData
#' @importFrom igraph V
cth_classifier_cds <- function(cds_subset, cth, curr_node, frequency_thresh) {
#curr_cell_vertex <- V(cth@classificationTree)[curr_node]
next_nodes <- c()
#print (unique(pData(cds_subset)$Cluster))
for (child in V(cth@classificationTree) [ suppressWarnings(nei(curr_node, mode="out")) ]){
child_cell_class_func <- V(cth@classificationTree) [ child ]$classify_func[[1]]
#type_res <- sparseApply(exprs(cds_subset), 2, child_cell_class_func, convert_to_dense=FALSE)
type_res <- child_cell_class_func(exprs(cds_subset))
#print(type_res)
type_res <- unlist(type_res)
names(type_res) <- row.names(pData(cds_subset))
cell_type_name <- V(cth@classificationTree) [ child ]$name
if (length(frequency_thresh) > 1)
required_thresh <- frequency_thresh[cell_type_name]
else
required_thresh <- frequency_thresh
if ((sum(type_res) / length(type_res)) > frequency_thresh){
next_nodes <- c(next_nodes, cell_type_name)
}
#print (paste(V(cth@classificationTree) [ child ]$name, ":", sum(type_res), " of ", length(type_res) ))
}
if (length(next_nodes) == 1){
CellType <- cth_classifier_cds(cds_subset, cth, next_nodes[1], frequency_thresh)
}else if(length(next_nodes) == 0){
if (curr_node == "root")
CellType = "Unknown"
else
CellType = curr_node
}else if(length(next_nodes) > 1){
CellType = "Ambiguous"
}else{
CellType = "Unknown"
}
return (CellType)
}
classifyCellsHelperCds <- function(cds_subset, cth, frequency_thresh){
CellType <- cth_classifier_cds(cds_subset, cth, "root", frequency_thresh)
}
#' @importFrom igraph V
cth_classifier_cell <- function(cell_name, cth, curr_node, gate_res) {
next_nodes <- c()
for (child in V(cth@classificationTree) [ suppressWarnings(nei(curr_node, mode="out")) ]){
type_res <- gate_res[[V(cth@classificationTree) [ child ]$name]]
#print (class(type_res[cell_name]))
#print (cell_name)
if (type_res[cell_name] == TRUE)
next_nodes <- c(next_nodes, V(cth@classificationTree) [ child ]$name)
}
if (length(next_nodes) == 1){
CellType <- cth_classifier_cell(cell_name, cth, next_nodes[1], gate_res)
}else if(length(next_nodes) == 0){
if (curr_node == "root")
CellType = "Unknown"
else
CellType = curr_node
}else if(length(next_nodes) > 1){
CellType = "Ambiguous"
}else{
CellType = "Unknown"
}
return (CellType)
}
#' @importFrom Biobase exprs pData
#' @importFrom igraph V
#' @importFrom dplyr %>%
classifyCellsHelperCell <- function(cds, cth){
#next_node_list <- rep(list(), ncol(cds))
gate_res <- list()
for (v in V(cth@classificationTree)){
cell_class_func <- V(cth@classificationTree) [ v ]$classify_func[[1]]
type_res <- cell_class_func(exprs(cds))
gate_res[[ V(cth@classificationTree) [ v ]$name]] <- type_res
}
cds_pdata <- dplyr::group_by_(dplyr::select_(rownames_to_column(pData(cds)), "rowname"), "rowname")
class_df <- as.data.frame(cds_pdata %>% do(CellType = cth_classifier_cell(.$rowname, cth, "root", gate_res)))
CellType <- factor(unlist(class_df$CellType))
names(CellType) <- class_df$rowname
#CellType <- cth_classifier_cell(cds_subset, cth, "root", gate_res)
return(CellType)
}
#' @title Classify cells according to a set of markers
#'
#' @description Creates a CellTypeHierarchy object which can store
#' cell types with the addCellType() function. When classifyCells
#' is used with a CellDataSet and a CellTypeHierarchy cells in the
#' CellDataSet can be classified as cell types found in the CellTypeHierarchy
#'
#' @details CellTypeHierarchy objects are Monocle's mechanism for
#' classifying cells into types based on known markers. To classify the cells
#' in a CellDataSet object according to known markers, first construct a
#' CellTypeHierachy with \code{newCellTypeHierarchy()} and
#' \code{addCellType()} and then provide both the \code{CellDataSet}
#' and the \code{CellTypeHierachy} to \code{classifyCells()}. Each
#' call to \code{addCellType()} registers a classification function
#' that accepts the expression data from a CellDataSet object as input, and
#' returns a boolean vector indicating whether each cell is of the given type.
#' When you call \code{classifyCells()}, each cell will be checked against the classification functions in the
#' \code{CellTypeHierachy}. If you wish to make a cell type a subtype of
#' another that's already been registered with a CellTypeHierarchy object,
#' make that one the "parent" type with the \code{cell_type_name} argument. If
#' you want two types to be mutually exclusive, make them "siblings" by giving
#' them the same parent. The classifcation functions in a CellTypeHierarchy must take a single argument, a matrix of
#' expression values, as input. Note that this matrix could either be a
#' \code{\link[Matrix]{sparseMatrix}} or a dense matrix. Explicitly casting the input to a dense
#' matrix inside a classification function is likely to drastically slow down
#' classifyCells and other routines that use CellTypeHierarhcy objects.
#' Successive calls to \code{addCellType} build up a tree of classification
#' functions inside a CellTypeHierarchy. When two functions are siblings in
#' the tree, classifyCells expects that a cell will meet the classification
#' criteria for at most one of them. For example, you might place
#' classification functions for T cells and B cells as siblings, because
#' a cell cannot be both of these at the same time. When a cell meets the
#' criteria for more than one function, it will be tagged as "Ambiguous". If
#' \code{classifyCells} reports a large number of ambiguous cells, consider
#' adjusting your classification functions. For example, some cells are
#' defined by very high expression of a key gene that is expressed at lower
#' levels in other cell types. Raising the threshold for this gene in a
#' classification could resolve the ambiguities. A classification function
#' can also have child functions. You can use this to specify subtypes of
#' cells. For example, T cells express the gene CD3, and there are many
#' subtypes. You can encode each subset by first adding a general T cell
#' classification function that recognizes CD3, and then adding an additional
#' function that recognizes CD4 (for CD4+ helper T cells), one for CD8 (to
#' identify CD8+ cytotoxic T cells), and so on. \code{classifyCells} will
#' aim to assign each cell to its most specific subtype in the "CellType"
#' column. By default, \code{classifyCells} applies the classification functions to
#' individual cells, but you can also apply it to cells in a "grouped" mode to
#' impute the type of cells that are missing expression of your known markers.
#' You can specify additional (quoted) grouping variables to \code{classifyCells}.
#' The function will group the cells according to these factors, and then
#' classify the cells. It will compute the frequency of each cell type in each
#' group, and if a cell type is present at the frquency specified in
#' \code{frequency_thresh}, all the cells in the group are classified as that
#' type. If group contains more one cell type at this frequency, all the cells
#' are marked "Ambiguous". This allows you to impute cell type based on
#' unsupervised clustering results (e.g. with \code{\link{clusterCells}()}) or
#' some other grouping criteria.
#'
#'
#' @return \code{newCellTypeHierarchy} and \code{addCellType} both return an
#' updated CellTypeHierarchy object. \code{classifyCells} returns an updated
#' \code{CellDataSet} with a new column, "CellType", in the pData table.
#'
#' @importFrom igraph vertex graph.empty
#'
#' @export
newCellTypeHierarchy <- function()
{
cth <- new( "CellTypeHierarchy",
classificationTree = graph.empty())
root_node_id <- "root"
cth@classificationTree <- cth@classificationTree + vertex(root_node_id, classify_func=list(function(x) TRUE))
#cth@classificationTree %>% add_vertices(1, name = root_node_id, "classify_func"=list(function(x) TRUE))
return(cth)
}
#' Add a new cell type
#' @description adds a cell type to a pre-existing CellTypeHierarchy and produces a function that accepts
#' expression data from a CellDataSet. When the function is called on a CellDataSet a boolean vector is returned
#' that indicates whether each cell is or is not the cell type that was added by addCellType.
#' @param cth The CellTypeHierarchy object
#' @param cell_type_name The name of the new cell type. Can't already exist in
#' cth
#' @param classify_func A function that returns true when a cell is of the new
#' type
#' @param parent_cell_type_name If this cell type is a subtype of another,
#' provide its name here
#'
#' @importFrom igraph V edge
#'
#' @export
addCellType <- function(cth, cell_type_name, classify_func, parent_cell_type_name="root")
{
if (cell_type_name %in% V(cth@classificationTree)$name){
stop(paste("Error: cell type",cell_type_name, "already exists."))
}
# TODO: verify that classify_func has the right signature/call semantics?
cth@classificationTree <- cth@classificationTree + vertex(cell_type_name, classify_func=list(classify_func))
cth@classificationTree <- cth@classificationTree + edge(parent_cell_type_name, cell_type_name)
return (cth)
}
#' @title Classify cells according to a set of markers
#'
#' @description classifyCells accepts a cellDataSet and and a cellTypeHierarchy.
#' Each cell in the cellDataSet is checked against the functions in the cellTypeHierarchy
#' to determine each cell's type
#'
#' @describeIn newCellTypeHierarchy Add a cell type to a CellTypeHierarchy
#' @param cds The CelllDataSet you want to classify
#' @param ... character strings that you wish to pass to dplyr's group_by_ routine
#' @param enrichment_thresh fraction to be multipled by each cell type percentage. Only used if frequency_thresh is NULL, both cannot be NULL
#' @param frequency_thresh If at least this fraction of group of cells meet a cell types marker criteria, impute them all to be of that type.
#' @importFrom dplyr select_ do group_by_ inner_join %>%
#' @importFrom tibble rownames_to_column
#' @importFrom Biobase pData pData<-
#' @export
#' @examples
#' \dontrun{
#' # Initialize a new CellTypeHierachy
#'
#' # Register a set of classification functions. There are multiple types of T cells
#' # A cell cannot be both a B cell and a T cell, a T cell and a Monocyte, or
#' # a B cell and a Monocyte.
#' cth <- newCellTypeHierarchy()
#'
#' cth <- addCellType(cth, "T cell",
#' classify_func=function(x) {x["CD3D",] > 0})
#'
#' cth <- addCellType(cth, "CD4+ T cell",
#' classify_func=function(x) {x["CD4",] > 0},
#' parent_cell_type_name = "T cell")
#'
#' cth <- addCellType(cth, "CD8+ T cell",
#' classify_func=function(x) {
#' x["CD8A",] > 0 | x["CD8B",] > 0
#' },
#' parent_cell_type_name = "T cell")
#'
#' cth <- addCellType(cth, "B cell",
#' classify_func=function(x) {x["MS4A1",] > 0})
#'
#' cth <- addCellType(cth, "Monocyte",
#' classify_func=function(x) {x["CD14",] > 0})
#'
#' # Classify each cell in the CellDataSet "mix" according to these types
#' mix <- classifyCells(mix, cth)
#'
#' # Group the cells by the pData table column "Cluster". Apply the classification
#' functions to the cells groupwise. If a group is at least 5% of a type, make
#' them all that type. If the group is 5% one type, and 5% a different, mutually
#' exclusive type, mark the whole cluster "Ambiguous"
#' mix <- classifyCells(mix, Cluster, 0.05)
#' }
#'
classifyCells <- function(cds, cth, frequency_thresh=NULL, enrichment_thresh=NULL, ...) {
progress_opts <- options()$dplyr.show_progress
options(dplyr.show_progress = F)
if (length(list(...)) > 0){
if (is.null(enrichment_thresh) && is.null(frequency_thresh))
stop("Error: to use classifyCells in grouped mode, you must also set frequency_thresh")
cds <- classifyCells(cds, cth)
if (is.null(frequency_thresh)){
frequency_thresholds <- prop.table(table(pData(cds)$CellType))
frequency_thresholds <- frequency_thresholds * enrichment_thresh
frequency_thresholds <- unlist(lapply(frequency_thresholds, min, 1.0))
}else
frequency_thresholds <- frequency_thresh
cds_pdata <- dplyr::group_by_(dplyr::select_(rownames_to_column(pData(cds)), "rowname", ...), ...)
class_df <- as.data.frame(cds_pdata %>% dplyr::do(CellType = classifyCellsHelperCds(cds[,.$rowname], cth, frequency_thresh)))
class_df$CellType <- as.character(unlist(class_df$CellType))
#class_df$rowname <- as.character(class_df$rowname)
}else{
type_res <- classifyCellsHelperCell(cds, cth)
class_df <- data.frame(rowname = names(type_res), CellType = type_res)
class_df$CellType <- as.character(class_df$CellType)
class_df$rowname <- as.character(class_df$rowname)
}
options(dplyr.show_progress = progress_opts)
pData(cds) <- pData(cds)[!(names(pData(cds)) %in% "CellType")]
#pData(cds)$cell_type <- cds_types
pData(cds) <- as.data.frame(suppressMessages(inner_join(rownames_to_column(pData(cds)), class_df)))
pData(cds)$CellType <- factor(pData(cds)$CellType)
row.names(pData(cds)) <- pData(cds)$rowname
pData(cds) <- pData(cds)[,-1]
cds
}
#' @describeIn newCellTypeHierarchy Calculate each gene's specificity for each cell type
#'
#' Computes the Jensen-Shannon distance between the distribution of a gene's
#' expression across cells and a hypothetical gene that is perfectly restricted
#' to each cell type. The Jensen-Shannon distance is an information theoretic
#' metric between two probability distributions. It is a widely accepted measure
#' of cell-type specificity. For a complete description see Cabili \emph{et. al},
#' Genes & Development (2011).
#'
#' @param cth CellTypeHierarchy
#' @param remove_ambig a boolean that determines if ambiguous cells should be removed
#' @param remove_unknown a boolean that determines whether unknown cells should be removed
#' @return For a CellDataset with N genes, and a CellTypeHierarchy with k types,
#' returns a dataframe with N x k rows. Each row contains a gene and a specifity
#' score for one of the types.
#' @importFrom reshape2 dcast
#' @importFrom dplyr %>%
#' @importFrom Biobase exprs fData pData
#' @export
calculateMarkerSpecificity <- function(cds, cth, remove_ambig=TRUE, remove_unknown=TRUE){
if(class(cds)[1] != "CellDataSet") {
stop("Error cds is not of type 'CellDataSet'")
}
if(class(cth)[1] != "CellTypeHierarchy") {
stop("Error cth is not of type 'CellTypeHierarchy'")
}
CellType <- NA
markerSpecificityHelper <- function(cds, cth){
averageExpression <- Matrix::rowMeans(exprs(cds))
averageExpression <- unlist(averageExpression)
averageExpression[is.na(averageExpression)] <- 0
#names(averageExpression) <- row.names(fData(cds))
return (data.frame(gene_id = row.names(fData(cds)), expr_val=averageExpression))
}
progress_opts <- options()$dplyr.show_progress
options(dplyr.show_progress = T)
cds <- cds[,row.names(subset(pData(cds), CellType %in% c("Unknown", "Ambiguous") == FALSE))]
cds_pdata <- dplyr::group_by_(dplyr::select_(rownames_to_column(pData(cds)), "rowname", "CellType"), "CellType")
class_df <- as.data.frame(cds_pdata %>% do(markerSpecificityHelper(cds[,.$rowname], cth)))
class_df <- dcast(class_df, CellType ~ gene_id, value.var = "expr_val")
row.names(class_df) <- class_df$CellType
class_df <- class_df[,-1]
class_df <- t(as.matrix(class_df))
marker_specificities <- lapply(1:ncol(class_df), function(cell_type_i){
perfect_specificity <- rep(0.0, ncol(class_df))
perfect_specificity[cell_type_i] <- 1.0
apply(class_df, 1, function(x) {
if (sum(x) > 0) 1 - JSdistVec(makeprobsvec(x), perfect_specificity)
else 0
})
})
marker_specificities <- t(do.call(rbind, marker_specificities))
colnames(marker_specificities) <- colnames(class_df)
marker_specificities <- melt(marker_specificities)
colnames(marker_specificities) <- c("gene_id", "CellType", "specificity")
marker_specificities$gene_id <- as.character(marker_specificities$gene_id)
return (marker_specificities)
}
#' Select the most cell type specific markers
#'
#' This is a handy wrapper function around dplyr's top_n function to extract
#' the most specific genes for each cell type. Convenient, for example, for
#' selecting a balanced set of genes to be used in semi-supervised clustering
#' or ordering.
#'
#' @param marker_specificities The dataframe of specificity results produced by \code{\link{calculateMarkerSpecificity}()}
#' @param num_markers The number of markers that will be shown for each cell type
#' @return A data frame of specificity results
#' @importFrom dplyr top_n %>%
#' @export
selectTopMarkers <- function(marker_specificities, num_markers = 10){
specificity <- NA
as.data.frame(marker_specificities %>%
group_by_("CellType") %>%
top_n(n = num_markers, wt = specificity))
}
#' Test genes for cell type-dependent expression
#'
#' @description takes a CellDataSet and a CellTypeHierarchy and classifies all cells into types passed
#' functions passed into the CellTypeHierarchy. The function will remove all "Unknown" and "Ambiguous" types
#' before identifying genes that are differentially expressed between types.
#'
#' @param cds A CellDataSet object containing cells to classify
#' @param cth The CellTypeHierarchy object to use for classification
#' @param residualModelFormulaStr A model formula string specify effects you
#' want to exclude when testing for cell type dependent expression
#' @param balanced Whether to downsample the cells so that there's an equal number of each type prior to performing the test
#' @param verbose Whether to emit verbose output during the the search for cell-type dependent genes
#' @param cores The number of cores to use when testing
#' @param reclassify_cells a boolean that indicates whether or not the cds and cth should be run through classifyCells again
#' @param remove_ambig a boolean that indicates whether or not ambiguous cells should be removed the cds
#' @param remove_unknown a boolean that indicates whether or not unknown cells should be removed from the cds
#' @return A table of differential expression test results
#' @importFrom stringr str_replace_all
#' @importFrom dplyr sample_n
#' @importFrom Biobase pData pData<-
#' @export
markerDiffTable <- function (cds, cth, residualModelFormulaStr="~1", balanced=FALSE, reclassify_cells=TRUE, remove_ambig=TRUE, remove_unknown=TRUE, verbose=FALSE, cores=1) {
if(class(cds)[1] != "CellDataSet") {
stop("Error cds is not of type 'CellDataSet'")
}
if(class(cth)[1] != "CellTypeHierarchy") {
stop("Error cth is not of type 'CellTypeHierarchy'")
}
CellType <- NULL
if (verbose)
message("Classifying cells according to markers")
if (reclassify_cells)
cds <- classifyCells(cds, cth, 0.05)
if (remove_ambig)
cds <- cds[,pData(cds)$CellType %in% c("Ambiguous") == FALSE]
if (remove_unknown)
cds <- cds[,pData(cds)$CellType %in% c("Unknown") == FALSE]
pData(cds)$CellType <- droplevels(pData(cds)$CellType)
if (balanced){
cell_type_counts <- table(pData(cds)$CellType)
cell_type_counts <- cell_type_counts[cell_type_counts > 0]
least_frequent_type <- which(cell_type_counts == min(cell_type_counts))
least_frequent_type <- names(cell_type_counts)[least_frequent_type]
n_cells <- cell_type_counts[least_frequent_type]
message(paste("Least frequent cell type is '", least_frequent_type, "', randomly selecting ", n_cells, " cells for marker identification test", sep=""))
selected_cells <- c()
for (cell_type in names(cell_type_counts)){
cell_type_sample <- sample_n(rownames_to_column(subset(pData(cds), CellType == cell_type)), n_cells)$rowname
selected_cells <- c(selected_cells, cell_type_sample)
}
cds <- cds[,selected_cells]
# if(is.null(max_cells) == FALSE && max_cells < ncol(cds))
# selected_cells <- sample(ncol(cds), max_cells)
# else
# selected_cells <- colnames(cds)
}
fullModelFormulaStr <- paste("CellType")
fullModelFormulaStr <- paste("~", fullModelFormulaStr,sep = "")
if (residualModelFormulaStr != "~1"){
residual_terms <- str_replace_all(residualModelFormulaStr, "~", "")
fullModelFormulaStr <- paste(fullModelFormulaStr, residual_terms, sep = " + ")
}
if (verbose)
message("Testing for marker-dependent expression")
marker_diff <- differentialGeneTest(cds,
fullModelFormulaStr=fullModelFormulaStr,
reducedModelFormulaStr=residualModelFormulaStr,
verbose=verbose,
cores=cores)
return(marker_diff)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.