Nothing
# Internal functions -----------------------------------------------------------
clusterMaker4Blocks <- function(gr, relationToIsland, islandName, maxGap,
maxClusterWidth) {
# Get middle position of each island
if (!is.character(relationToIsland) ||
!all(unique(relationToIsland) %in%
c("OpenSea", "Island", "Shelf", "N_Shelf", "S_Shelf", "Shore",
"N_Shore", "S_Shore")) ||
length(gr) != length(relationToIsland)) {
stop("argument 'relationToIsland' is either not a character or seems ",
"to have wrong values")
}
if (!is.character(islandName) || length(gr) != length(islandName)) {
stop("argument 'islandName' is not a character or it has the wrong ",
"length")
}
fullName <- paste0(islandName, relationToIsland)
isNotSea <- (fullName != "OpenSea")
pos <- start(gr)
# NOTE: These are the "average positions" on shelfs, shores, and islands
ipos <- round(tapply(pos[isNotSea], fullName[isNotSea], mean))
# Make non-island/shore/shelf positions their own island
islFactor <- ifelse(isNotSea, fullName, seq_along(pos))
# Check which of the new positions correspond to islands/shores/shelfs,
# i.e. open sea. Assign probes in islands/shores/shelves just one position
pos[isNotSea] <- ipos[islFactor[isNotSea]]
# make first pass clusters with new positions
pns <- boundedClusterMaker(
chr = as.numeric(seqnames(gr)),
pos = pos,
assumeSorted = TRUE,
maxGap = maxGap,
maxClusterWidth = maxClusterWidth)
# But islands must be on their own so we change those beginning and ends of
# each genomic region type: island, shore, shelf
types <- unique(relationToIsland)
# Take out open sea
types <- types[types != "OpenSea"]
for (i in types) {
ind <- relationToIsland == i
StartEnd <- abs(diff(c(0,ind) != 0))
add2pns <- cumsum(StartEnd)
pns <- pns + add2pns
}
# where are the islands?
pns <- as.numeric(as.factor(pns))
# annotation
type <- sub("^[NS]_", "", relationToIsland)
data.frame(pns = pns, type = type)
}
cpgCollapseAnnotation <- function(gr, relationToIsland, islandName,
maxGap = 500, maxClusterWidth = 1500,
blockMaxGap = 2.5*10^5, verbose = TRUE) {
# Check inputs
if (is.unsorted(order(gr))) stop("object has to be ordered.")
# NOTE: This function aggregates probes in islands and the rest are
# aggregated into clusters. Then annotation is created for the new
# aggregated data the indexes of the original probes along with the
# group ids are returned indexes and pns respectively. Note that
# these two are redudant but they save me work
# Make sure chr is a factor.
# TODO (Kasper): Should this be done from get-go?
if (verbose) {
message("[cpgCollapseAnnotation] Clustering islands and clusters of ",
"probes.\n")
}
# Block tab has the block group ids
blocktab <- clusterMaker4Blocks(
gr = gr,
relationToIsland = relationToIsland,
islandName = islandName,
maxGap = maxGap,
maxClusterWidth = maxClusterWidth)
# Split rows by group id
groupIndexes <- split(seq_along(blocktab$pns), blocktab$pns)
# make an object with results
if (verbose) message("[cpgCollapseAnnotation] Computing new annotation.\n")
tmpRanges <- t(sapply(groupIndexes, function(ind) range(start(gr)[ind])))
anno <- GRanges(
seqnames = Rle(
tapply(as.vector(seqnames(gr)), blocktab$pns, function(x) x[1])),
ranges = IRanges(start = tmpRanges[,1], end = tmpRanges[,2]),
id = as.numeric(names(groupIndexes)),
type = as.vector(
tapply(
as.character(blocktab$type), blocktab$pns, function(x) x[1])))
res <- list(anno = anno, indexes = groupIndexes)
seql <- seqlevels(res$anno)
seqlevels(res$anno, pruning.mode = "coarse") <-
.seqnames.order[.seqnames.order %in% seql]
if (verbose) message("[cpgCollapseAnnotation] Defining blocks.\n")
ind <- (res$anno$type == "OpenSea")
pns <- rep(NA, length(res$anno))
pns[ind] <- clusterMaker(
chr = as.numeric(seqnames(res$anno[ind,])),
pos = start(res$anno[ind,]),
maxGap = blockMaxGap)
res$anno$blockgroup <- pns
res$pns <- blocktab$pns
res
}
# Internal generics ------------------------------------------------------------
# `x` is either `meth_signal` or `cn`
# `...` are additional arguments passed to methods.
setGeneric(
".cpgCollapse",
function(x, Indexes, dataSummary, na.rm, verbose, ...)
standardGeneric(".cpgCollapse"),
signature = "x")
# Internal methods -------------------------------------------------------------
setMethod(
".cpgCollapse",
"matrix",
function(x, Indexes, dataSummary, na.rm, verbose) {
# Set up return matrix
n_clusters <- length(Indexes)
n_cpgs_per_cluster <- lengths(Indexes)
stopifnot(all(n_cpgs_per_cluster) > 0)
# NOTE: .cpgCollapse() can return non-integer values, so fill a numeric
# matrix
collapsed_x <- matrix(NA_real_, nrow = n_clusters, ncol = ncol(x))
# Process clusters with a single CpG
cluster_idx <- n_cpgs_per_cluster == 1L
cpg_idx <- unlist(Indexes[cluster_idx], use.names = FALSE)
collapsed_x[cluster_idx, ] <- x[cpg_idx, , drop = FALSE]
# Process clusters with 0 or > 1 CpG
cluster_idx <- which(n_cpgs_per_cluster != 1L)
for (i in cluster_idx) {
if (verbose) if (runif(1) < 0.0001) cat(".")
# TODO: If willing to assume dataSummary comes from
# DelayedMatrixStats, could use `rows` rather than explicit
# subsetting.
collapsed_x[i, ] <- dataSummary(
x[Indexes[[i]], , drop = FALSE],
na.rm = na.rm)
}
if (verbose) cat("\n")
collapsed_x
})
setMethod(
".cpgCollapse",
"DelayedMatrix",
function(x, Indexes, dataSummary, na.rm, verbose, BPREDO = list(),
BPPARAM = SerialParam()) {
# Set up intermediate RealizationSink object of appropriate dimensions
# and type
n_clusters <- length(Indexes)
n_cpgs_per_cluster <- lengths(Indexes)
# NOTE: This is ultimately coerced to the output DelayedMatrix object
# NOTE: .cpgCollapse() can return non-integer values, so fill a "double"
# sink
ans_type <- "double"
sink <- DelayedArray::AutoRealizationSink(
dim = c(n_clusters, ncol(x)),
type = ans_type)
on.exit(close(sink))
# Set up ArrayGrid instances over `x` as well as "parallel" ArrayGrid
# instance over `sink`
x_grid <- colGrid(x)
sink_grid <- RegularArrayGrid(
refdim = dim(sink),
spacings = c(nrow(sink), ncol(sink) / length(x_grid)))
# Sanity check ArrayGrid objects have the same dim
stopifnot(dim(x_grid) == dim(sink_grid))
# Loop over column-blocks of `x`, perform SWAN normalization, and write
# to `normalized_x_sink`
blockApplyWithRealization(
x = x,
FUN = .cpgCollapse,
Indexes = Indexes,
dataSummary = dataSummary,
na.rm = na.rm,
verbose = verbose,
sink = sink,
x_grid = x_grid,
sink_grid = sink_grid,
BPREDO = BPREDO,
BPPARAM = BPPARAM)
# Return as DelayedMatrix
as(sink, "DelayedArray")
}
)
# Exported functions -----------------------------------------------------------
# NOTE: Collapses a minfi object into islands, shores, and defines block regions
cpgCollapse <- function(object, what = c("Beta", "M"), maxGap = 500,
blockMaxGap = 2.5 * 10^5, maxClusterWidth = 1500,
dataSummary = colMeans, na.rm = FALSE,
returnBlockInfo = TRUE, islandAnno = NULL,
verbose = TRUE, ...) {
# Check inputs
# TODO: ?cpgCollapse suggests `object` needn't be a
# Genomic[MethlSet|RatioSet] but the code assumes `granges(object)`
# works
what <- match.arg(what)
# Construct annotation
if (verbose) message("[cpgCollapse] Creating annotation.\n")
islands <- .getIslandAnnotation(object = object, islandAnno = islandAnno)
relationToIsland <- islands$Relation_to_Island
islandName <- islands$Islands_Name
gr <- granges(object)
anno <- cpgCollapseAnnotation(
gr = gr,
relationToIsland = relationToIsland,
islandName = islandName,
maxGap = maxGap,
blockMaxGap = blockMaxGap,
maxClusterWidth = maxClusterWidth,
verbose = verbose)
Indexes <- split(seq_along(anno$pns), anno$pns)
# Collapse data
if (verbose) message("[cpgCollapse] Collapsing data")
meth_signal <- getMethSignal(object, what = what, ...)
collapsed_meth_signal <- .cpgCollapse(
x = meth_signal,
Indexes = Indexes,
dataSummary = dataSummary,
na.rm = na.rm,
verbose = verbose)
cn <- getCN(object,...)
if (!is.null(cn)) {
collapsed_cn <- .cpgCollapse(
x = cn,
Indexes = Indexes,
dataSummary = dataSummary,
na.rm = na.rm,
verbose = verbose)
}
# Construct output
preproc <- c(collapse = "cpgCollapse", preprocessMethod(object))
if (what == "M") {
ret <- GenomicRatioSet(
gr = anno$anno,
Beta = NULL,
M = collapsed_meth_signal,
CN = collapsed_cn,
colData = colData(object),
annotation = annotation(object),
preprocessMethod = preproc)
}
else {
ret <- GenomicRatioSet(
gr = anno$anno,
Beta = collapsed_meth_signal,
M = NULL,
CN = collapsed_cn,
colData = colData(object),
annotation = annotation(object),
preprocessMethod = preproc)
}
# NOTE: Take out annotation as we already kept it
anno <- anno[2:3]
if (returnBlockInfo) {
return(list(object = ret, blockInfo = anno))
}
ret
}
# NOTE: blockFinder() just uses a cluster object or granges()$blockgroup
# where clusters are constructed by
# cpgCollpase() which calls
# cpgCollapseAnnotation() which calls
# clusterMaker4Blocks() which calls
# boundedClusterMaker()
blockFinder <- function(object, design, coef = 2, what = c("Beta", "M"),
cluster = NULL, cutoff = NULL,
pickCutoff = FALSE, pickCutoffQ = 0.99,
nullMethod = c("permutation","bootstrap"),
smooth = TRUE, smoothFunction = locfitByCluster,
B = ncol(permutations), permutations = NULL,
verbose = TRUE, bpSpan = 2.5*10^5, ...) {
# Check inputs
.isMatrixBackedOrStop(object)
if (!is(object,"GenomicRatioSet")) stop("object must be 'GenomicRatioSet'")
if (is.null(cluster)) cluster <- granges(object)$blockgroup
if (is.null(cluster)) stop("need 'cluster'")
what <- match.arg(what)
nullMethod <- match.arg(nullMethod)
idx <- which(granges(object)$type == "OpenSea")
if (length(idx) == 0) stop("need OpenSea types in granges(object)")
pos <- start(granges(object)) / 2 + end(granges(object)) / 2
res <- bumphunterEngine(
mat = getMethSignal(object, what)[idx,],
design = design,
coef = coef,
chr = as.character(seqnames(object))[idx],
pos = pos[idx], cluster = cluster[idx],
cutoff = cutoff, pickCutoff = pickCutoff,
pickCutoffQ = pickCutoffQ,
nullMethod = nullMethod,
smooth = smooth,
smoothFunction = smoothFunction,
B = B,
permutations = permutations,
verbose = verbose,
bpSpan = bpSpan,...)
## FIXME: reindex like below
res$coef <- bumphunter:::.getEstimate(getMethSignal(object, what), design, coef = coef)
## Re-indexing because we only fit the model on the idx indexes
res$table$indexStart <- idx[res$table$indexStart]
res$table$indexEnd <- idx[res$table$indexEnd]
fitted <- rep(NA, length(granges(object)))
fitted[idx] <- res$fitted
res$fitted <- fitted
pvaluesMarginal <- rep(NA,length(granges(object)))
pvaluesMarginal[idx] <- res$pvaluesMarginal
res$pvaluesMarginal <- pvaluesMarginal
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.