Nothing
#' Generates description for a flowFrame
#'
#' @param ff A flowframe
#' @importFrom Biobase pData
#' @return A flowframe with description consistent with pData(ff@parameters)
#' @noRd
generate_description<-function(ff){
res <- ff
res.desc <- pData(res@parameters)
new.names <- sprintf("$P%sS",seq_len(nrow(res.desc)))
new.values <- setNames(res.desc[,"desc"],new.names)
new.values[is.na(new.values)] <- " "
new.values <- as.list(new.values)
res@description[names(res@description)%in%names(new.values)] <- NULL
res@description <- c(res@description,new.values)
new.names <- sprintf("$P%sR",seq_len(nrow(res.desc)))
new.values <- setNames(ceiling(res.desc[,"maxRange"]-res.desc[,"minRange"]),new.names)
new.values[is.na(new.values)] <- " "
new.values <- as.list(new.values)
res@description[names(res@description)%in%names(new.values)] <- NULL
res@description <- c(res@description,new.values)
new.names <- sprintf("$P%sE",seq_len(nrow(res.desc)))
new.values <- setNames(rep("0,0",length(new.names)),new.names)
res@description[names(res@description)%in%names(new.values)] <- NULL
res@description <- c(res@description,new.values)
new.names <- sprintf("$P%sB",seq_len(nrow(res.desc)))
new.values <- setNames(rep("32",length(new.names)),new.names)
res@description[names(res@description)%in%names(new.values)] <- NULL
res@description <- c(res@description,new.values)
new.names <- sprintf("$P%sG",seq_len(nrow(res.desc)))
new.values <- setNames(rep("1",length(new.names)),new.names)
res@description[names(res@description)%in%names(new.values)] <- NULL
res@description <- c(res@description,new.values)
res
}
#' Colors points of a biplot (2d-tSNE, 2d-PCA...) by the intensity of channels for each flowframe in the flowset
#'
#' @param matrix A matrix
#' @param x_axis A column name of matrix used in biplots as the x axis
#' @param y_axis A column name of matrix used in biplots as the y axis
#' @param global_across_channels Boolean specificying whether the color key should be calibrated across all channels or individually per channel.
#' @param palette A vector of colors that'll be passed to colorRampPalette
#' @param resolution The resolution of the files that'll be imported in the pdf. Default is 72, increase for higher resolution. You may need to enlarge rasters accordingly.
#' @param data_transformation_reverse The colors will be linearly scaled across the range of the data. If the data was transformed, you may however want the labels which appear in your color-keys to reflect the raw intensities. In this case, this should be the inverse of the function you used to transform your data
#' @param file_name String of the location of the output file (should end in .pdf)
#' @param raster.width Width of each embedded raster. Defaults to 480
#' @param raster.height height of each embedded raster. Defaults to 480
#' @param ... passed to plot (suggested: pch=16, cex=0.5 or less)
#' @return NULL
#' @importFrom grDevices colorRampPalette
#' @importFrom grDevices png
#' @importFrom grDevices pdf
#' @importFrom grDevices dev.off
#' @importFrom raster tmpDir
#' @importFrom graphics par
#' @importFrom graphics plot
#' @importFrom graphics plot.new
#' @importFrom graphics rect
#' @importFrom graphics text
#' @importFrom grid grid.raster
#' @importFrom grid grid.newpage
#' @importFrom grid grid.text
#' @importFrom grid unit
#' @importFrom grid gpar
#' @importFrom png readPNG
#' @importFrom utils tail
#' @note Since pdf files are vectorized, they can get really big if a lot of data point are plotted. This function thus used bitmap images that are stored in a temporary directory (tmpDir()) and then import them in a single pdf. If you're interested in using the bitmap images, you can fetch them in tmpDir()
#' @noRd
color_biplot_by_channels <- function(
matrix,
x_axis,
y_axis,
global_across_channels=TRUE,
palette=c("blue","green","red"),
resolution=72,
data_transformation_reverse=identity,
file_name="biplot.pdf",
raster.height=480,
raster.width=480,
... #pass to plot for e.g. tSNE biplot
)
{
regular_channels <- setdiff(colnames(matrix),c(x_axis,y_axis))
if(global_across_channels){
data_range <- range(matrix[,regular_channels],na.rm=TRUE)
data_range <- matrix(rep(data_range,length(regular_channels)),ncol=length(regular_channels),nrow=2,byrow=FALSE,dimnames=list(c("min","max"),regular_channels))
} else {
data_range <- apply(matrix[,regular_channels],na.rm=TRUE,2,range,na.rm=TRUE)
rownames(data_range) <- c("min","max")
}
x <- matrix[,x_axis]
y <- matrix[,y_axis]
xp <- matrix[,regular_channels,drop=FALSE]
if(any(!(is.na(x)&is.na(y)))){
rasters <- lapply(
regular_channels,
function(pname,xp,data.range,x,y)
{
color.scale <- unique(colorRampPalette(palette)(1000))
n <- length(color.scale)
breaks <- unique(seq(data.range["min",pname],data.range["max",pname],length.out=n+1))
if(length(unique(breaks))>1){
points.colors <- as.character(cut(xp[,pname],breaks=breaks,labels=color.scale))
} else {
points.colors <- rep("lightsteelblue",length(xp[,pname]))
}
mainplot <- paste(tmpDir(),"/mainplot_",pname,".png",sep="")
png(mainplot,res=resolution,height=raster.height*resolution/72,width=raster.width*resolution/72)
par("bty"="l")
plot(
x,
y,
col=points.colors,
xlab=x_axis,
ylab=y_axis,
main=pname,
...
)
dev.off()
colorscale <- paste(tmpDir(),"/colorscale_",pname,".png",sep="")
png(colorscale,res=resolution,height=raster.height/2*resolution/72,width=raster.width*resolution/72)
plot.new()
par("mar"=c(2,1,2,1))
xlims <- par("usr")[c(1, 2)]
x_coords <- seq(xlims[1],xlims[2],length.out=n+1)
ylims <- par("usr")[c(3, 4)]
labels <- signif(data_transformation_reverse(breaks),2)
labels <- labels[round(seq(1,length(labels),length.out=5))]
labels.x_coords <- seq(x_coords[1],x_coords[length(x_coords)],length.out=5)
rect(border=NA,ybottom=ylims[1],ytop=ylims[2],xleft=x_coords[-length(x_coords)],xright=x_coords[-1],col=color.scale)
text(xpd=TRUE,y=ylims[1],pos=1,labels=labels,x=labels.x_coords)
text(xpd=TRUE,y=ylims[2],pos=3,labels=paste(pname,"intensity"),x=mean(xlims))
dev.off()
return(list(main.file=mainplot,scale.file=colorscale))
},
xp=xp,
data.range=data_range,
x=x,
y=y
)
file <- file_name
pdf(file)
if(global_across_channels){
plot.new()
grid.raster(readPNG(rasters[[1]]$scale.file,native=TRUE))
}
lapply(
rasters,
function(x){
par("mar"=c(0,0,0,0))
grid.newpage()
label <- sub(".png","",sub("mainplot_","",tail(strsplit(x$main.file,"/")[[1]],1),fixed=TRUE),fixed=TRUE)
if(!global_across_channels){
grid.raster(readPNG(x$main.file,native=TRUE),y=0.6,height=0.8)
grid.raster(readPNG(x$scale.file,native=TRUE),y=0.1,height=0.2)
}
if(global_across_channels){
grid.raster(readPNG(x$main.file,native=TRUE))
}
grid.text(x=unit(1,"npc"),y=unit(1,"npc"),label=label,just=c(1,1),gp=gpar(col="white",cex=0.1))
return(NULL)
}
)
dev.off()
}
NULL
}
#' @title For each parameter in the FCS files, interactively prompts whether it is part of the Backbone, the Infinity (exploratory) markers or should be ignored.
#' @description This function will load the first of the input FCS files and extract the measured parameters as well as their labels. For each of these, it will ask the user whether it is part of the backbone measurements (which will be used as a predictor variable in regressions models), Infinity (exploratory) measurements (usually PE-conjugated or APC-conjugated, used as dependent/target variable in regressions) or discarded (e.g. for parameter such as Time, Sample IDs, Event number IDs, ...).
#' @param files character vector of paths to FCS files
#' @export
#' @importFrom flowCore read.FCS parameters
#' @importFrom Biobase pData
#' @importFrom methods is
#' @return A data.frame
#' @examples
#' data(steady_state_lung)
#' dir <- tempdir()
#' fcs_tmp <- file.path(dir, "tmp.fcs")
#' library(flowCore)
#' write.FCS(steady_state_lung[[1]], file <- fcs_tmp)
#' if(interactive()){
#' select_backbone_and_exploratory_markers(fcs_tmp)
#' }
select_backbone_and_exploratory_markers <- function(files){
if(!interactive()){
stop("Interactive backbone selection requires an interactive R session")
} else {
requireNamespace("flowCore")
representative_file <- read.FCS(files[1],truncate_max_range=FALSE,ignore.text.offset=TRUE)
data_channels <- pData(parameters(representative_file)[,c("name","desc")])
cat("For each data channel, enter either: backbone, exploratory or discard (can be abbreviated)\n")
choices <- c("backbone","exploratory","discard")
result <- cbind(data_channels,type=NA,stringsAsFactors=FALSE)
for(i in seq_len(nrow(data_channels))){
user_choice <- NA
while(is.na(user_choice)){
x <- data_channels[i,,drop=TRUE]
user_choice <- readline(paste0(ifelse(!is.na(x["desc"]),x["desc"],x["name"])," (",x["name"],"):"))
user_choice <- pmatch(user_choice,choices)
if(is.na(user_choice))
cat("Incorrect selection, enter either: backbone, exploratory or discard\n")
}
result[i,"type"] <- choices[user_choice]
}
user_choice <- NA
print(result)
while(is.na(user_choice)){
correct <- readline("Is selection correct? (yes/no): ")
choices <- c("yes","no")
user_choice <- choices[pmatch(correct,choices)]
if(is.na(user_choice)){
print(result)
} else if(user_choice=="no"){
return(select_backbone_and_exploratory_markers(files=files))
} else if(user_choice=="yes"){
if(!any(result$type=="exploratory")){
cat("At least one measurement must be exploratory\n")
return(select_backbone_and_exploratory_markers(files=files))
}
return(result)
}
}
}
}
#' Split a matrix into a list of chunks. Faster than using split on a data.frame
#' @param mat A matrix
#' @param vector A vector of length nrow(mat) if byrow=TRUE, ncol(mat) if byrow=FALSE
#' @param byrow if TRUE split rows, if FALSE split columns
#' @noRd
split_matrix <- function (mat, vector, byrow = TRUE)
{
if (byrow & nrow(mat) != length(vector)) {
stop("if byrow=TRUE, vector's length should have length nrow(mat)")
}
else if (!byrow & ncol(mat) != length(vector)) {
!byrow & ncol(mat) != length(vector)
stop("if byrow=FALSE, vector's length should have length ncol(mat)")
}
if (byrow) {
levels <- split(seq_len(nrow(mat)), vector)
res <- lapply(levels, function(x) {
mat[x, , drop = FALSE]
})
}
else {
levels <- split(seq_len(ncol(mat)), vector)
res <- lapply(levels, function(x) {
mat[, x, drop = FALSE]
})
}
res
}
#' Linear scale with chosen boundaries
#' @noRd
minmax_scale <- function(matrix,min=1,max=1000,na.rm=TRUE){
apply(matrix,2,function(x){
a <- (max-min)/(max(x,na.rm=na.rm)-min(x,na.rm=na.rm))
b <- min-a*min(x, na.rm=na.rm)
a*x+b
})
}
## Documentation of data objects
#' Subset of a massively parallel cytometry experiment of mouse lung single cells
#' @docType data
#' @format a flowSet containing 10 flowFrames (thus corresponding to 10 FCS files)
#' @source \url{https://flowrepository.org/id/FR-FCM-Z2LP}
#' @usage data(steady_state_lung)
"steady_state_lung"
#' Target and isotypes annotation for the data object infinityFlow::steady_state_lnug
#' @docType data
#' @format a data.frame specifying the Infinity antibody targets and isotypes for each flowFrame of the steady_state_lung flowSet
#' @usage data(steady_state_lung_annotation)
"steady_state_lung_annotation"
#' Backbone and Infinity antibodies specification for the data object infinityFlow::steady_state_lnug
#' @docType data
#' @format a data.frame specifying the Infinity antibody targets and isotypes for each flowFrame of the steady_state_lung flowSet
#' @usage data(steady_state_lung_backbone_specification)
"steady_state_lung_backbone_specification"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.