Nothing
# ===========================================================================
#
# internal.r: internal functions for GDS objects
#
# Copyright (C) 2020 Xiuwen Zheng
#
# This is free software: you can redistribute it and/or modify it
# under the terms of the GNU Lesser General Public License Version 3 as
# published by the Free Software Foundation.
#
# gdsfmt is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with gdsfmt.
# If not, see <http://www.gnu.org/licenses/>.
##############################################################################
# File Operations
# return TRUE if file reopen occurs
.reopen <- function(gdsfile)
{
stopifnot(inherits(gdsfile, "gds.class"))
.Call(gdsReopenGDS, gdsfile)
}
# return file size(s) in T/G/M/K/B
.pretty_dsize <- function(sz) .Call(gdsFmtSize, sz)
##############################################################################
# Parallel functions
# Dynamic call using the cluster object in the parallel package
# cl -- a cluster object
# .num -- the total number of segments
# .fun -- a user-defined function
# .combinefun -- a user-defined function for combining the returned values
# .updatefun -- a user-defined function for updating progress (could be NULL)
# ... -- other parameters passed to .fun
#
.parse_send_data <- quote(
parallel:::sendData(con, list(type=type,data=value,tag=tag)))
.postNode <- function(con, type, value=NULL, tag=NULL) eval(.parse_send_data)
.sendCall <- function(con, fun, args, return=TRUE, tag=NULL)
{
.postNode(con, "EXEC", list(fun=fun, args=args, return=return, tag=tag))
NULL
}
.parse_recv_one_data <- quote(parallel:::recvOneData(cl))
.recvOneResult <- function(cl)
{
v <- eval(.parse_recv_one_data)
list(value=v$value$value, node=v$node, tag=v$value$tag)
}
.DynamicClusterCall <- function(cl, .num, .fun, .combinefun,
.updatefun=NULL, ...)
{
# in order to use the internal functions accessed by ':::'
# the functions are all defined in 'parallel/R/snow.R'
# check
stopifnot(is.null(cl) | inherits(cl, "cluster"))
stopifnot(is.numeric(.num))
stopifnot(is.function(.fun))
stopifnot(is.character(.combinefun) | is.function(.combinefun))
stopifnot(is.null(.updatefun) | is.function(.updatefun))
if (!is.null(cl))
{
## parallel implementation
if (identical(.combinefun, "unlist") | identical(.combinefun, "list"))
ans <- vector("list", .num)
else
ans <- NULL
p <- length(cl)
if ((.num > 0L) && p)
{
#### this closure is sending to all nodes
argfun <- function(i) c(i, list(...))
submit <- function(node, job)
.sendCall(cl[[node]], .fun, argfun(job), tag = job)
for (i in 1:min(.num, p)) submit(i, i)
for (i in seq_len(.num))
{
d <- .recvOneResult(cl)
j <- i + min(.num, p)
if (j <= .num) submit(d$node, j)
dv <- d$value
if (inherits(dv, "try-error"))
{
stop("One of the nodes produced an error: ",
as.character(dv))
}
if (is.function(.combinefun))
{
if (is.null(ans))
ans <- dv
else
ans <- .combinefun(ans, dv)
} else if (.combinefun %in% c("unlist", "list"))
{
# assignment NULL would remove it from the list
if (!is.null(dv)) ans[[d$tag]] <- dv
}
if (!is.null(.updatefun)) .updatefun(i)
}
}
} else {
#### serial implementation
if (is.function(.combinefun))
{
ans <- NULL
for (i in seq_len(.num))
{
dv <- .fun(i, ...)
if (is.null(ans))
ans <- dv
else
ans <- .combinefun(ans, dv)
}
} else if (identical(.combinefun, "none"))
{
for (i in seq_len(.num)) .fun(i, ...)
ans <- NULL
} else if (.combinefun %in% c("unlist", "list"))
{
ans <- vector("list", .num)
for (i in seq_len(.num))
{
v <- .fun(i, ...)
# assignment NULL would remove it from the list
if (!is.null(v)) ans[[i]] <- v
}
}
}
# output
ans
}
# Dynamic call using forking
# ncore -- the number of cores
# .num -- the total number of segments
# .fun -- a user-defined function
# .combinefun -- a user-defined function for combining the returned values
# .updatefun -- a user-defined function for updating progress (could be NULL)
# ... -- other parameters passed to .fun
#
.parse_prepare_cleanup <- quote(parallel:::prepareCleanup())
.mc_prepCleanup <- function() eval(.parse_prepare_cleanup)
.parse_cleanup <- quote(parallel:::cleanup(TRUE))
.mc_cleanup <- function() eval(.parse_cleanup)
.parse_process_id <- quote(parallel:::processID(jobs))
.mc_processID <- function(jobs) eval(.parse_process_id)
.parse_sel_child <- quote(parallel:::selectChildren(children, timeout))
.mc_selectChildren <- function(children, timeout) eval(.parse_sel_child)
.parse_read_child <- quote(parallel:::readChild(child))
.mc_readChild <- function(child) eval(.parse_read_child)
.DynamicForkCall <- function(ncore, .num, .fun, .combinefun, .updatefun, ...)
{
# in order to use the internal functions accessed by ':::'
# the functions are all defined in 'parallel/R/unix/mclapply.R'
# check
stopifnot(is.numeric(ncore), length(ncore)==1L)
stopifnot(is.numeric(.num), length(.num)==1L)
stopifnot(is.function(.fun))
stopifnot(is.character(.combinefun) | is.function(.combinefun))
stopifnot(is.null(.updatefun) | is.function(.updatefun))
# all processes created from now on will be terminated by cleanup
parallel::mc.reset.stream()
.mc_prepCleanup()
on.exit(.mc_cleanup())
# initialize
if (identical(.combinefun, "unlist") | identical(.combinefun, "list"))
ans <- vector("list", .num)
else
ans <- NULL
jobs <- lapply(seq_len(min(.num, ncore)), function(i)
parallel::mcparallel(.fun(i, ...), name=NULL, mc.set.seed=TRUE, silent=FALSE))
jobsp <- .mc_processID(jobs)
jobid <- seq_along(jobsp)
has.errors <- 0L
finish <- rep(FALSE, .num)
nexti <- length(jobid) + 1L
while (!all(finish))
{
s <- .mc_selectChildren(jobs[!is.na(jobsp)], -1)
if (is.null(s)) break # no children, should not happen
if (is.integer(s))
{
for (ch in s)
{
ji <- match(TRUE, jobsp==ch)
ci <- jobid[ji]
r <- .mc_readChild(ch)
if (is.raw(r))
{
child.res <- unserialize(r)
if (inherits(child.res, "try-error"))
{
has.errors <- has.errors + 1L
stop(child.res)
}
if (is.function(.combinefun))
{
if (inherits(child.res, "try-error"))
stop(child.res)
if (is.null(ans))
ans <- child.res
else
ans <- .combinefun(ans, child.res)
} else if (.combinefun %in% c("unlist", "list"))
{
# assignment NULL would remove it from the list
if (!is.null(child.res)) ans[[ci]] <- child.res
}
if (!is.null(.updatefun)) .updatefun(ci)
} else {
# the job has finished
finish[ci] <- TRUE
jobsp[ji] <- jobid[ji] <- NA_integer_
# still something to do
if (nexti <= .num)
{
jobid[ji] <- nexti
jobs[[ji]] <- parallel::mcparallel(.fun(nexti, ...),
name=NULL, mc.set.seed=TRUE, silent=FALSE)
jobsp[ji] <- .mc_processID(jobs[[ji]])
nexti <- nexti + 1L
}
}
}
}
}
if (has.errors)
{
warning(sprintf("%d function calls resulted in an error", has.errors),
immediate.=TRUE, domain=NA)
}
# output
ans
}
##############################################################################
# Unit testing
# Run all unit tests
UnitTest <- function()
{
# load R packages
if (!requireNamespace("RUnit"))
stop("Please install RUnit package!")
options(test.verbose=TRUE)
# define a test suite
myTestSuite <- RUnit::defineTestSuite("gdsfmt examples",
system.file("unitTests", package = "gdsfmt"),
testFileRegexp = "^test_.*\\.R$")
# run the test suite
testResult <- RUnit::runTestSuite(myTestSuite)
# print detailed text protocol to standard out:
RUnit::printTextProtocol(testResult)
# return
invisible()
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.