Nothing
## This function impliments generalized Procrestes analysis (GPA) to align
## high-density regions in a flowSet. The GPA method is concerned with
## multi-dimensional normalization wheares the warping method with
## one-dimentional.
gpaSet <- function(x, params, register="backgating", bgChannels=NULL,
bg=NULL, rotation.only=TRUE,
downweight.missingFeatures=FALSE,
thres.sigma=2.5,
show.workflow=FALSE,
ask=names(dev.cur())!="pdf")
{
###########################
## check valid arguments ##
###########################
flowCore:::checkClass(x, "flowSet")
flowCore:::checkClass(params, "character")
.checkChannel(params, colnames(x))
if (length(params) < 2) {
stop("At least two params are required to apply multi-dimensional
normalization \n") }
flowCore:::checkClass(register, "character")
## what if register=="curv1Filter"
if (is.null(bgChannels) & is.null(bg) & register=="backgating") {
message("Argument 'bgChannels' is missing. Default with channels
other than", params, ".\n")
bgChannels <- setdiff(colnames(x), c(params, "time", "Time"))
}
else {
flowCore:::checkClass(bgChannels, "character")
.checkChannel(bgChannels, colnames(x))
}
if (!is.null(bg)) flowCore:::checkClass(bg, "data.frame")
flowCore:::checkClass(downweight.missingFeatures, "logical")
flowCore:::checkClass(rotation.only, "logical")
flowCore:::checkClass(thres.sigma, "numeric")
######### end of checking argument ##############
###############################
## GPA algorithm starts here ##
###############################
## 1. get methoded (labelled) features using either backgating (for 2D)
## or nnclust (for mD)
nDim <- length(params)
if (register=="backgating") {
if (is.null(bg)) {
message("Backgating ... \n")
bg <- backGating(x, xy=params, channels=bgChannels)
}
features <- idFeaturesByBackgating(bg, nDim=nDim,
reference.method="median",
plot.workflow=show.workflow, ask=ask,
thres.sigma=thres.sigma, lambda=0.1)
}
else { ## nnclus and curv1Filter for higher dimensions
stop("gpaSet: Only Backgating method is available")
}
message("Procrustes analysis ... \n")
## 2. get translation matrix, rotation matrix and scalling factor
TransMatrix <- .getTranslationMatrix(features,
nDim=nDim, downweight.missingFeatures)
CenteredFeatures <- .translateFeatures(TransMatrix, features,
nDim=nDim, downweight.missingFeatures)
SVD <- .getSVD(CenteredFeatures, nDim=nDim, downweight.missingFeatures)
## eliminate boundary points
for (i in params) {
bd <- flowCore::boundaryFilter(i)
x <- flowCore::Subset(x, bd)
}
## 4. alignment: translation, rotation/scaling, un-centered
tmatrix <- .combTransMatrix(downweight.missingFeatures, TransMatrix)
expData <- fsApply(x, function(y) {
sampleName <- keyword(y)$ORIGINALGUID
newSet <- exprs(y)[, params]
newSet <- .translate(newSet, tmatrix[sampleName, ])
scal <- ifelse(is.nan(SVD[[sampleName]]$scal), 1,
SVD[[sampleName]]$scal)
newSet <- scal * (newSet %*% SVD[[sampleName]]$Q)
trans2 <- ifelse(!length(TransMatrix$transM2),
0, TransMatrix$transM2[[sampleName]])
newSet <- .translate(newSet, -trans2)
exprs(y)[, params] <- newSet
y})
exprs.min <- fsApply(expData, function(x)
apply(exprs(x)[, params], 2, min))
restoreRange <- abs(apply(exprs.min, 2, mean))
pD <- pData(parameters(expData[[1]]))
names <- rownames(pD)[pD$name %in% params]
## update parameters slot: minRange, maxRange, pData, and parameters
regSet <- fsApply(expData, function(y) {
exprs(y)[, params] <- .translate(exprs(y)[, params], -abs(restoreRange))
pars <- parameters(y)
oldRange <- pData(pars)[names, c("minRange", "maxRange")]
pData(pars)[names, c("minRange", "maxRange")] <-
.getMinMaxRange(oldRange, exprs(y)[, params])
y@parameters <- pars
y})
## construct gpa object
gpaObj <- list(id.feature.method=register, norm.channels=params,
backgating.channels=bgChannels,
downweight.missingFeatures=downweight.missingFeatures,
SVD=SVD, TransMatrix=TransMatrix,
Reference=features$reference,
Features=features[names(features)!="reference"])
class(gpaObj) <- "GPA"
## wrap up the result
#regSet <- as(expData, "flowSet")
phenoData(regSet) <- phenoData(x)
regSet <- regSet[sampleNames(x)]
if (!is.null(attr(x, "warping")))
attr(regSet, "warping") <- attr(x, "warping")
attr(regSet, "GPA") <- gpaObj
if (show.workflow)
.plotGPAprocess(params, features, CenteredF=CenteredFeatures,
SVD=SVD, TransMatrix=TransMatrix,
before.gpa=x, after.gpa=regSet, nDim=nDim,
downweight.missingFeatures=downweight.missingFeatures,
ask=ask)
return(regSet)
}
print.GPA <- function(gpaObj, ...)
{
for (i in names(gpaObj)) {
message("\n", i, ":\n", sep="")
print(gpaObj[[i]])
}
invisible()
}
###########################
## translate matrix x by y
###########################
.translate <- function(x, y)
{
## x is an m-by-n matrix and y is an n-dimentional array (a1, a2, ..., an)
if (length(y)==1)
y <- rep(y, ncol(x))
if (length(y) != ncol(x)) stop("dimension does not match")
I <- matrix(1, nrow=nrow(x), ncol=1)
centered <- x - I %*% y
}
###########################################
## get the min and max range of the data ##
###########################################
.getMinMaxRange <- function(oldRange, y)
{
newRange = data.frame(minRange=apply(y, 2, min),
maxRange=apply(y, 2, max))
newRange[, "minRange" ] <-
pmin(oldRange[, "minRange" ], newRange[, "minRange"])
newRange[, "maxRange" ] <-
pmax(oldRange[, "maxRange" ], newRange[, "maxRange"])
newRange
}
#############
## .combTransMatrix
#############
.combTransMatrix <- function(downweight.missingFeatures, TransMatrix,
first.centered.only=FALSE)
{
nSample <- length(TransMatrix[names(TransMatrix$transM1)!="reference"])
if (downweight.missingFeatures & length(TransMatrix$transM2) & !first.centered.only)
tmatrix <- do.call(rbind, TransMatrix$transM1[1:nSample]) +
do.call(rbind, TransMatrix$transM2[1:nSample])
else
tmatrix <- do.call(rbind, TransMatrix$transM1[1:nSample])
}
#################
## check channel
#################
.checkChannel<- function(ch, allch) {
mc <- ch %in% allch
if(!all(mc))
stop("Invalid parameters not mathcing the flowSet:\n ",
paste(ch[!mc], collapes=", "))
return(invisible())
}
#################################################################
## GPA: get Translation matrix for all the samples and reference
#################################################################
.getTranslationMatrix <- function(features, nDim, downweight.missingFeatures)
{
## features: return value of idFeaturesByBackgating
## if downweight.missingFeatures is TRUE, then return f$reference is
## a list containing multiple matrices, each of which corresponds to a
## particular sample.
transM1 <- lapply(features, function(x) colMeans(x[, 1:nDim], na.rm=TRUE))
transM2 <- list()
## get the second translation matrix
if (downweight.missingFeatures) {
## translate features
for (i in names(features))
features[[i]][, 1:nDim] <- .translate(features[[i]][, 1:nDim],
transM1[[i]])
transM2 <- lapply(features[names(features)!="reference"],
function(x) colMeans(x[x$bogus==FALSE, 1:nDim], na.rm=TRUE))
refM <- lapply(features[names(features)!="reference"],
function(x, y)
colMeans(y[x$bogus==FALSE, 1:nDim], na.rm=TRUE),
features$reference)
transM2$reference <- refM
}
transM <- list(transM1=transM1, transM2=transM2)
return(transM)
}
#################################################################
## GPA: translate the features to center them at the origin
#################################################################
.translateFeatures <- function(TransMatrix, tfeatures,
nDim, downweight.missingFeatures)
{
## tfeatures: features
## TranslationMatrix: return value of .getTranslationMatrix
## if downweight.missingFeatures is TRUE, then return tfeaturesf$reference is
## a list containing multiple matrices, each of which corresponds to a
## particular sample.
## translate samples' features
nSample <- length(tfeatures) - 1
## prepare the translation matrix
tmatrix <- .combTransMatrix(downweight.missingFeatures, TransMatrix,
first.centered.only=FALSE)
for (i in 1:nSample)
tfeatures[[i]][, 1:nDim] <- .translate(tfeatures[[i]][, 1:nDim],
tmatrix[i, ])
## translate reference features
if (!downweight.missingFeatures)
tfeatures$reference[, 1:nDim] <- .translate(tfeatures$reference[, 1:nDim],
TransMatrix$transM1$reference)
else
tfeatures$reference <- lapply(TransMatrix$transM2$reference,
function(x2, y, x1) {
y[, 1:nDim] <- .translate(y[,1:nDim], x2+x1)
y
}, tfeatures$reference, TransMatrix$transM1$reference)
return(tfeatures)
}
##########################################################
## GPA: get rotation matrix (Q) and scalling factor (s) ##
##########################################################
.getSVD <- function(CenteredF, nDim, downweight.missingFeatures)
{ ## CenteredF: centered features
## downweight.missingFeatures: if FALSE, treat the bogus features as real. if TRUE
## elimiate bogus features
if (!downweight.missingFeatures)
SVD <- lapply(CenteredF[names(CenteredF) != "reference"],
function(x, y, rotation.only) {
flowStats::iProcrustes(x[, 1:nDim], y[, 1:nDim],
rotation.only)},
CenteredF$reference, rotation.only=TRUE)
else {
SVD <- list()
for (i in names(CenteredF[names(CenteredF) != "reference"])) {
x <- CenteredF[[i]]
y <- CenteredF$reference[[i]]
SVD[[i]] <- flowStats::iProcrustes(x[x$bogus==FALSE, 1:nDim],
y[x$bogus==FALSE, 1:nDim],
rotation.only=TRUE)
}
}
return(SVD)
}
##########################################################
## use SVD and translation matrix to transform the data ##
##########################################################
.usingSVD <- function(y, SVD, tmatrix, TransMatrix=NULL) {
if (is(y, "flowFrame")) {
sampleName <- keyword(y)$ORIGINALGUID
newSet <- exprs(y)[, params]
newSet <- .translate(newSet, tmatrix[sampleName, ])
scal <- ifelse(is.nan(SVD[[sampleName]]$scal), 1,
SVD[[sampleName]]$scal)
newSet <- scal * (newSet %*% SVD[[sampleName]]$Q)
trans2 <- ifelse(!length(TransMatrix$transM2),
0, TransMatrix$transM2[[sampleName]])
newSet <- .translate(newSet, -trans2)
exprs(y)[, params] <- newSet
y
}
else if (is.matrix(y)) {
newSet <- .translate(y, tmatrix)
scal <- ifelse(is.nan(SVD$scal), 1, SVD$scal)
newSet <- scal * (newSet %*% SVD[[sampleName]]$Q)
trans2 <- ifelse(is.null(TransMatrix),
0, TransMatrix$transM2)
newSet <- .translate(newSet, -trans2)
}
}
##################################################################
## GPA: plot the workflow -- alignment of features and flowsets ##
##################################################################
.plotGPAprocess <- function(params, features, CenteredF, SVD, TransMatrix,
before.gpa, after.gpa,
nDim, downweight.missingFeatures, ask=ask)
{
par(ask=ask)
on.exit(par(ask=FALSE))
## plot alignment of the features
newF <- CenteredF[names(CenteredF)!="reference"]
for (i in names(newF)) {
## transformation: rotation and rescalling
scal <- ifelse(is.nan(SVD[[i]]$scal), 1, SVD[[i]]$scal)
newF[[i]][, 1:nDim] <- scal *
(as.matrix(newF[[i]][, 1:nDim]) %*% SVD[[i]]$Q)
## "un-centered"
if (downweight.missingFeatures)
newF[[i]][, 1:nDim] <- .translate(newF[[i]][, 1:nDim],
-TransMatrix$transM2[[i]])
}
if (downweight.missingFeatures) {
be <- features[names(features)!="reference"]
tmatrix <- .combTransMatrix(downweight.missingFeatures,
TransMatrix, first.centered.only=TRUE)
## translate the original features by TransMatrix$transM1
for (i in names(be))
be[[i]][, 1:nDim] <- .translate(be[[i]][, 1:nDim], tmatrix[i, ])
be <- lapply(be, function(x) x[x$bogus==FALSE, ])
be <- do.call(make.groups, be)
}
else
be <- do.call(make.groups, CenteredF)
af <- do.call(make.groups, newF)
ba <- make.groups(before.GPA=be, after.GPA=af)
names(ba)[(ncol(ba)-1):ncol(ba)] <- c("whichS", "whichG")
mainTitle <- do.call(paste, as.list(unique(features$channel)))
fo <- as.formula(paste(names(ba)[1], "~", names(ba[2]), " | whichG"))
## features: plot features -- before and after alignament
print(xyplot(fo, data=ba,
group=whichS,
auto.key=list(cex=0.7, title="sample", space="right"),
main="Features alignment",
sub="Discard bogus features"))
print(xyplot(fo, data=ba,
group=cluster,
auto.key=list(cex=0.7, title="cluster", space="right"),
sub="Discard bogus features",
main="Features alignment"))
## flowset: plot flowset -- before and after 2D normalization
before <- as(before.gpa, "flowFrame")
after <- as(after.gpa, "flowFrame")
fo <- as.formula(paste(params[1], "~", params[2]))
xs <- as(list("1.before"=before, "2.after"=after), "flowSet")
f <- filter(xs, curv2Filter(params, bwFac=1.4))
print(flowViz::xyplot(fo, after.gpa, main="after WGPA"))
print(flowViz::xyplot(fo, xs, filter=f,
main="Before and After WGPA",
sub="Aggregation of all the flowFrames",
par.setting=list(gate=list(fill=1:5, col=3, alpha=0.2))))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.