Description Usage Arguments Value Author(s) References See Also Examples
This is the core function in the flowPeaks package. It
generates the output of the cluster and information associated with
each cluster, which can be used by the function plot
for
visualization
1 | flowPeaks(x,tol=0.1,h0=1,h=1.5)
|
x |
a data matrix for the flow cytometry data, it needs to have at least two rows, and the names for each column should be unique. For a flowFrame data, its exprssion matrix slot should be used as x, where only channles of interest are selected (see the example below). |
tol |
The tolerance (between 0 and 1) when neighboring clusters should be considered to be merged |
h0 |
The multiplier of the vaiarance matrix S0 |
h |
The multiplier of the variance matrix S |
It returns an object of class flowPeaks, which is a list of the following variables:
peaks.cluster |
An integer shows the cluster labels (between 1 and K for K clusters) for each cell. The clustering is based on the flowPeaks algorithm |
peaks |
A summary of the cluster information. It is a list with the following three variables:
|
kmeans.cluster |
An integer shows the cluster labels for the initial kmeans clustering |
kmeans |
A summary of the initial kmeans clustering. The meaning of the variables can be seens in the description of peaks above |
info |
The information that can be used for plot, and how the initial kmeans clustering and the final flowPeaks clustering are connected |
x |
The input data x |
Yongchao Ge yongchao.ge@gmail.com
Ge Y. et al, flowPeaks: a fast unsupervised clustering for flow cytometry data via K-means and density peak finding, 2012, Bioinformatics 8(15):2052-8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | ##demonstrate how to use a flowFrame
## Not run:
require(flowCore)
samp <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))
##do the clustering based on the asinh transforamtion of
##the first two FL channels
fp<-flowPeaks(asinh(samp@exprs[,3:4]))
plot(fp)
## End(Not run)
data(barcode)
fp<-flowPeaks(barcode[,c(1,3)])
plot(fp)
##to compare it with the gold standard
evalCluster(barcode.cid,fp$peaks.cluster,method="Vmeasure")
#to remove the outliers
fpc<-assign.flowPeaks(fp,fp$x)
plot(fp,classlab=fpc,drawboundary=FALSE,
drawvor=FALSE,drawkmeans=FALSE,drawlab=TRUE)
#to adjust the cluster by increasing the tol,h0, h, which results
#in a smaller number of clusters
fp2<-adjust.flowPeaks(fp,tol=0.5,h0=2,h=2)
summary(fp2)
print(fp) #an alternative of using summary(fp)
|
Loading required package: flowCore
Starting the flow Peaks analysis...
Task A: compute kmeans...
step 0, set the intial seeds, tot.wss=1426.31
step 1, do the rough EM, tot.wss=951.966 at 0.033632 sec
step 2, do the fine transfer of Hartigan-Wong Algorithm
tot.wss=938.179 at 0.051139 sec
...finished summarization at 0.057 sec
Task B: find peaks...
finished at 0.075 sec
Starting the flow Peaks analysis...
Task A: compute kmeans...
step 0, set the intial seeds, tot.wss=2.66069e+09
step 1, do the rough EM, tot.wss=1.69145e+09 at 0.350987 sec
step 2, do the fine transfer of Hartigan-Wong Algorithm
tot.wss=1.69036e+09 at 0.516488 sec
...finished summarization at 0.54 sec
Task B: find peaks...
finished at 0.604 sec
[1] 0.9983352
cluster.id weight Pacific.blue.center APC.center
[1,] 1 0.08530667 784.6786 1786.2346
[2,] 2 0.08442779 1518.1979 1826.5504
[3,] 3 0.08234390 750.3885 438.3863
[4,] 4 0.07850226 1418.8294 439.6213
[5,] 5 0.07834748 2088.5995 1838.5346
[6,] 6 0.07625254 2032.4362 446.0405
[7,] 7 0.07595958 772.0405 2488.5624
[8,] 8 0.07391992 1577.7355 2609.4396
[9,] 9 0.07086318 2070.2356 2466.3112
[10,] 10 0.06410852 2644.1186 1834.6225
[11,] 11 0.06380450 2587.7982 448.6811
[12,] 12 0.06055430 2623.5123 2460.2426
[13,] 13 0.03073317 3086.9572 445.9011
[14,] 14 0.03040705 3122.0747 2452.2894
[15,] 15 0.02927390 3128.4097 1785.3059
[16,] 16 0.01519523 2220.7283 1142.3692
cluster.id weight Pacific.blue.center APC.center
[1,] 1 0.082343902 750.3885 438.3863
[2,] 2 0.080237906 1535.4227 1862.5566
[3,] 3 0.078502255 1418.8294 439.6213
[4,] 4 0.078446980 788.5512 1839.0292
[5,] 5 0.078347484 2088.5995 1838.5346
[6,] 6 0.076252543 2032.4362 446.0405
[7,] 7 0.075959583 772.0405 2488.5624
[8,] 8 0.073919917 1577.7355 2609.4396
[9,] 9 0.070863182 2070.2356 2466.3112
[10,] 10 0.064108517 2644.1186 1834.6225
[11,] 11 0.063804502 2587.7982 448.6811
[12,] 12 0.060554303 2623.5123 2460.2426
[13,] 13 0.030733174 3086.9572 445.9011
[14,] 14 0.030407049 3122.0747 2452.2894
[15,] 15 0.029273901 3128.4097 1785.3059
[16,] 16 0.011049571 910.2476 1165.2406
[17,] 17 0.006118997 1738.2096 1142.6793
[18,] 18 0.005278810 2340.1613 1162.4670
[19,] 19 0.003797426 2832.2125 1113.9316
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.