Nothing
#Calculates the distance matrix between pairs of cluters. Cluster memberships are provided in Label and Mahalanobis determines if the distance function is mahalanobis or euclidean.
distanceMatrix <-
function(x, Label, Mahalanobis, MaxCovN){
n <- max(Label);
mat=matrix(0,n,n)
for (i in 1:n){
for (j in 1:n){
Li <- x[which(Label==i),]
Lj <- x[which(Label==j),]
if (!is.vector(Li)){
if (Mahalanobis){
MaxCovNumber<-min(MaxCovN, length(Li[,1]));
mat[i,j]=mean(mahalanobis(Li, colMeans(Lj), cov(Li[1:MaxCovNumber,])))
}
else
mat[i,j]=sqrt(sum(colMeans(Li)-colMeans(Lj))^2)
}
if (is.vector(Li)){
if (Mahalanobis){
MaxCovNumber<-min(MaxCovN, length(Li));
##mat[i,j]=mean(mahalanobis(Li, mean(Lj), cov(Li[1:MaxCovNumber])))
mat[i,j]=sum(Li-mean(Lj))^2/sd(Li[1:MaxCovNumber])
if (MaxCovNumber==1)
mat[i,j]=sum(Li-mean(Lj))^2
}
else
mat[i,j]=sqrt((mean(Li)-mean(Lj))^2)
}
}
}
return(mat);
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.