Nothing
#' @title Minimum and maximum metric values plot.
#' @name plotMetricsMinMax
#' @aliases plotMetricsMinMax
#' @description
#' It plots the minimum, maximum and standard deviation
#' values of the metrics in a \code{\link{SummarizedExperiment}} object.
#'
#' @inheritParams stability
#'
#' @return Nothing.
#'
#' @examples
#' # Using example data from our package
#' data("ontMetrics")
#' plotMetricsMinMax(ontMetrics)
#'
plotMetricsMinMax <- function(data) {
data <- as.data.frame(assay(data))
# Prepare data for plotting
# Data matrix without descritive column
matrix = data.matrix(data[,-1])
maxs = matrixStats::colMaxs(matrix)
mins = matrixStats::colMins(matrix)
means = colMeans(matrix)
sd = matrixStats::colSds(matrix)
dataStats = matrix(NA, nrow=5, ncol = length(data[,-1]), byrow=TRUE,
dimnames = list(c("Metric", "Min","Max","Mean","Sd"),
c(colnames(data[,-1]))))
dataStats["Metric",] = colnames(data[,-1])
dataStats["Min",] = mins
dataStats["Max",] = maxs
dataStats["Mean",] = means
dataStats["Sd",] = sd
dataStats.df = as.data.frame(dataStats)
dataStats.df.t = as.data.frame(t(dataStats.df))
# Factor to numeric conversion
dataStats.df.t$Min = as.numeric(as.character(dataStats.df.t$Min))
dataStats.df.t$Max = as.numeric(as.character(dataStats.df.t$Max))
dataStats.df.t$Mean = as.numeric(as.character(dataStats.df.t$Mean))
dataStats.df.t$Sd = as.numeric(as.character(dataStats.df.t$Sd))
## Plotting
p <- ggplot(dataStats.df.t, aes(x=dataStats.df.t$Metric)) +
geom_linerange(aes(ymin=dataStats.df.t$Min,ymax=dataStats.df.t$Max),
linetype=2,color="#4E84C4") +
geom_point(aes(y=dataStats.df.t$Min),size=3,color="#00AFBB") +
geom_point(aes(y=dataStats.df.t$Max),size=3,color="#FC4E07") +
theme_bw() +
theme(axis.text.x = element_text(angle = 90),
#axis.text.y = element_blank(),
text = element_text(size=15),
axis.line = element_line(colour = "black",
size = 1, linetype = "solid")
) +
geom_errorbar(aes(ymin=(dataStats.df.t$Max-dataStats.df.t$Sd),
ymax=(dataStats.df.t$Max+dataStats.df.t$Sd)), width=.2,
position=position_dodge(.9)) +
geom_errorbar(aes(ymin=(dataStats.df.t$Min-dataStats.df.t$Sd),
ymax=(dataStats.df.t$Min+dataStats.df.t$Sd)), width=.2,
position=position_dodge(.9)) +
scale_y_continuous(breaks=seq(round(min(dataStats.df.t$Min-dataStats.df.t$Sd)), # 10 ticks across min - max range
round(max(dataStats.df.t$Max+dataStats.df.t$Sd)),
round((max(dataStats.df.t$Max)-min(dataStats.df.t$Min)))/10),
labels=function(x) sprintf("%.2f", x)) + # Two decimals
labs(x = "Metrics", y = "Metric value", title = "Min/max/sd values across metrics") +
guides(fill=TRUE)
print(p)
}
#' @title Metric values as a boxplot.
#' @name plotMetricsBoxplot
#' @aliases plotMetricsBoxplot
#' @description
#' It plots the value of the metrics in a \code{\link{SummarizedExperiment}}
#' object as a boxplot.
#'
#' @inheritParams stability
#'
#' @return Nothing.
#'
#' @examples
#' # Using example data from our package
#' data("ontMetrics")
#' plotMetricsBoxplot(ontMetrics)
#'
plotMetricsBoxplot <- function(data) {
data <- as.data.frame(assay(data))
num_metrics_plot=20
data.metrics = data[,-1] # Removing Description column
metrics_length = length(colnames(data.metrics))
num_iterations = round(metrics_length/num_metrics_plot)
if (num_iterations > 0) {
num_iterations = num_iterations - 1
}
for (iteration in 0:num_iterations) {
i = 1
rangeStart = (iteration*num_metrics_plot)+1
rangeEnd = rangeStart+num_metrics_plot-1
if (rangeEnd > metrics_length) {
rangeEnd = metrics_length
}
suppressMessages({
data.melt = melt(data.metrics[,rangeStart:rangeEnd])
})
# Melting 1 variable (e.g: data.metrics[,11:11])
# won't create $variable column in data.melt.
if (rangeStart == rangeEnd) {
metricName = data[rangeStart, "Description"]
data.melt$variable = rep(metricName, length(data.melt$value))
}
p <- ggplot(data.melt, aes(x=data.melt$variable, y=data.melt$value)) +
geom_boxplot(
#aes(fill=data.melt$variable), # Colors
outlier.colour = "black",
outlier.alpha = 0.7,
outlier.shape = 21,
show.legend = FALSE
) +
#scale_y_continuous(limits = quantile(data.melt$value, c(0.1, 0.9))) +
scale_color_grey() +
theme_bw() +
theme(
text = element_text(size=20),
axis.text.x = element_text(angle = 90)
) +
labs(x = "Metrics", y="Metric value", fill="Metrics")
# compute lower and upper whiskers
#ylim1 = boxplot.stats(data.melt$value)$stats[c(1, 5)]
# scale y limits based on ylim1
#p1 = p + coord_cartesian(ylim = ylim1*1.05)
print(p)
}
}
#' @title Metric values clustering.
#' @name plotMetricsCluster
#' @aliases plotMetricsCluster
#' @description
#' It clusters the value of the metrics in a \code{\link{SummarizedExperiment}}
#' object as a boxplot.
#'
#' @inheritParams stability
#' @param scale Boolean. If true input data is scaled. Default: FALSE.
#'
#' @return An hclust object.
#'
#' @examples
#' # Using example data from our package
#' data("ontMetrics")
#' plotMetricsCluster(ontMetrics, scale=TRUE)
#'
plotMetricsCluster <- function(data, scale=FALSE) {
data <- as.data.frame(assay(data))
data.metrics = data[,-1] # Removing Description column
if (isTRUE(scale)) {
data.metrics = base::scale(data.metrics)
}
d <- dist(t(data.metrics), method = "euclidean") # distance matrix
fit <- hclust(d, method="ward.D2")
theme_set(theme_bw())
p <- ggdendrogram(fit, rotate = FALSE, size = 2) + # display dendogram
theme(
text = element_text(size=15)
) +
labs(title="Metrics dendrogram")
print(p)
return(fit)
}
#' @title Metric values as violin plot.
#' @name plotMetricsViolin
#' @aliases plotMetricsViolin
#' @description
#' It plots the value of the metrics in a \code{\link{SummarizedExperiment}}
#' object as a violin plot.
#'
#' @inheritParams stability
#'
#' @return Nothing.
#'
#' @examples
#' # Using example data from our package
#' data("ontMetrics")
#' plotMetricsViolin(ontMetrics)
#'
plotMetricsViolin <- function(data) {
data <- as.data.frame(assay(data))
data.metrics = data[,-1] # Removing Description column
num_metrics_plot=20
metrics_length = length(colnames(data.metrics))
num_iterations = round(metrics_length/num_metrics_plot)
if (num_iterations > 0) {
num_iterations = num_iterations - 1
}
for (iteration in 0:num_iterations) {
i = 1
rangeStart = (iteration*num_metrics_plot)+1
rangeEnd = rangeStart+num_metrics_plot-1
if (rangeEnd > metrics_length) {
rangeEnd = metrics_length
}
suppressMessages({
data.melt = melt(data.metrics[,rangeStart:rangeEnd])
})
# Melting 1 variable (11:11), won't create $variable column in data.melt.
if (rangeStart == rangeEnd) {
metricName = data[rangeStart, "Description"]
data.melt$variable = rep(metricName, length(data.melt$value))
}
p <- ggplot(data.melt, aes(x=data.melt$variable, y=data.melt$value)) +
geom_violin(trim=FALSE) +
geom_boxplot(width=0.1) +
#scale_y_continuous(limits = quantile(data.melt$value, c(0.1, 0.9))) +
scale_color_grey() +
theme_bw() +
theme(
text = element_text(size=20),
axis.text.x = element_text(angle = 90)
) +
labs(x = "Metrics", y="Metric value", fill="Metrics")
# compute lower and upper whiskers
#ylim1 = boxplot.stats(data.melt$value)$stats[c(1, 5)]
# scale y limits based on ylim1
#p1 = p + coord_cartesian(ylim = ylim1*1.05)
print(p)
}
}
#
# It returns true if value is in range (0.5, 0.7]
#
isReasonable <- function(value) {
return(value > 0.5 && value <= 0.7)
}
getLargestSilWidth <- function(qualityDf, metric, k1, k2) {
k1KSil = qualityDf[metric, k1]
k2KSil = qualityDf[metric, k2]
k = NULL
if (k1KSil >= k2KSil) {
k = k1
} else {
k = k2
}
return(getFormattedK(k))
}
#
# It transform a string 'k_X' into 'X'.
# For instace, input is 'k_4', output is '4'
#
getFormattedK <- function(k) {
return(gsub("^.*_","", k))
}
#' @title Calculating the optimal value of k.
#' getOptimalKValue
#' @aliases getOptimalKValue
#' @description
#' This method finds the optimal value of K per each metric.
#'
#' @param stabData An output \code{\link{ExperimentList}} from
#' a \code{\link{stabilityRange}} execution.
#'
#' @param qualData An output \code{\link{SummarizedExperiment}} from
#' a \code{\link{qualityRange}} execution.
#'
#' @param k.range A range of K values to limit the scope of the
#' analysis.
#'
#' @return It returns a dataframe following the schema:
#' \code{metric}, \code{optimal_k}.
#'
#' @examples
#' # Using example data from our package
#' data("rnaMetrics")
#' stabilityData <- stabilityRange(data=rnaMetrics, k.range=c(2,4), bs=20, getImages = FALSE)
#' qualityData <- qualityRange(data=rnaMetrics, k.range=c(2,4), getImages = FALSE)
#' kOptTable = getOptimalKValue(stabilityData, qualityData)
#'
#'
getOptimalKValue <- function(stabData, qualData, k.range=NULL) {
checkStabilityQualityData(stabData, qualData)
if (!is.null(k.range)) {
k.range.length = length(k.range)
if (k.range.length != 2) {
stop("k.range length must be 2")
}
k.min = k.range[1]
k.max = k.range[2]
checkKValue(k.min)
checkKValue(k.max)
if (k.max < k.min) {
stop("The first value of k.range cannot be greater than its second value")
} else if (k.min == k.max) {
stop("Range start point and end point are equals")
}
}
stabDf = standardizeStabilityData(stabData, k.range)
qualDf = standardizeQualityData(qualData, k.range)
metrics = as.character(as.data.frame(assay(stabData))$Metric)
STABLE_CLASS = 0.75
outputTable = as.data.frame(metrics)
#rownames(outputTable) = metrics
outputTable = outputTable[, -1]
optimalKs = list()
stabMaxKs = list() # List of maximum K for the stability of metric X
stabMaxKsStability = list() # Stability of the current K in stabMaxKs
stabMaxKsQuality = list() # Quality of the current K in stabMaxKs
qualMaxKs = list() # List of maximum K for the quality of metric X
qualMaxKsStability = list() # Stability of the current K in qualMaxKs
qualMaxKsQuality = list() # Quality of the current K in qualMaxKs
for (metric in metrics) {
message("Processing metric: ", metric, "\n")
stabMaxK = colnames(stabDf[metric, ])[apply(stabDf[metric, ],1,which.max)] # ks
stabMaxKFormatted = getFormattedK(stabMaxK)
stabMaxVal = stabDf[metric, stabMaxK]
qualMaxK = colnames(qualDf[metric, ])[apply(qualDf[metric, ],1,which.max)] # kg
qualMaxKFormatted = getFormattedK(qualMaxK)
qualMaxVal = qualDf[metric, qualMaxK]
## Info for output table
stabMaxKs = append(stabMaxKs, stabMaxKFormatted)
stabMaxKsStability = append(stabMaxKsStability, stabDf[metric, stabMaxK]);
stabMaxKsQuality = append(stabMaxKsQuality, qualDf[metric, stabMaxK]);
qualMaxKs = append(qualMaxKs, qualMaxKFormatted)
qualMaxKsStability = append(qualMaxKsStability, stabDf[metric, qualMaxK]);
qualMaxKsQuality = append(qualMaxKsQuality, qualDf[metric, qualMaxK]);
# CASE 1: ks == kg
if (identical(stabMaxK, qualMaxK)) {
k = stabMaxKFormatted
message("\tMaximum stability and quality values matches the same K value: '", k ,"'\n")
optimalKs = append(optimalKs, k)
} else {
# CASE 2: ks != kg
if (stabMaxVal > STABLE_CLASS && stabDf[metric, qualMaxK] > STABLE_CLASS) {
# Both stables
message("\tBoth Ks have a stable classification: '",
stabMaxKFormatted, "', '", qualMaxKFormatted ,"'\n")
k = qualMaxKFormatted
optimalKs = append(optimalKs, k)
message("\tUsing '", k, "' since it provides higher silhouette width\n")
} else {
if (stabMaxVal <= STABLE_CLASS && stabDf[metric, qualMaxK] <= STABLE_CLASS) {
# Both not stables: S_ks <= 0.75 && S_kg <= 0.75
message("\tBoth Ks do not have a stable classification: '",
stabMaxKFormatted, "', '", qualMaxKFormatted ,"'\n")
k = qualMaxKFormatted
optimalKs = append(optimalKs, k)
message("\tUsing '", k, "' since it provides higher silhouette width\n")
} else {
# S_ks > 0.75 && Sil_ks > 0.5 && S_kg <= 0.75
if ((stabMaxVal > STABLE_CLASS) && (qualDf[metric, stabMaxK] > 0.5)
&& (stabDf[metric, qualMaxK] <= STABLE_CLASS)) {
message("\tStability k '", stabMaxKFormatted, "' is stable but quality k '",
qualMaxKFormatted,"' is not\n")
k = stabMaxKFormatted
optimalKs = append(optimalKs, k)
message("\tUsing '", k, "' since it provides higher stability\n")
} else {
# CASE 3
if (stabMaxVal > STABLE_CLASS && qualDf[metric, stabMaxK] <= 0.5
&& stabDf[metric, qualMaxK] <= STABLE_CLASS) {
message("\tStability k '", stabMaxKFormatted, "' is stable but its silhouette value is not reasonable\n")
if (qualMaxVal > 0.5) { # S_kg > 0.5
k = qualMaxKFormatted
optimalKs = append(optimalKs, k)
message("\tUsing quality '", k, "' since its at least reasonable\n")
} else {# S_kg <= 0.5
k = stabMaxKFormatted
optimalKs = append(optimalKs, k)
message("\tUsing stability '", k, "' since quality k is not reasonable\n")
}
} else { # This should not happen but it might come in handy to check errors
message("\tUnknown case\n")
optimalKs = append(optimalKs, -1)
}
}
}
}
}
}
outputTable["Metric"] = metrics
outputTable["Stability_max_k"] = unlist(stabMaxKs)
outputTable["Stability_max_k_stab"] = unlist(stabMaxKsStability)
outputTable["Stability_max_k_qual"] = unlist(stabMaxKsQuality)
outputTable["Quality_max_k"] = unlist(qualMaxKs)
outputTable["Quality_max_k_stab"] = unlist(qualMaxKsStability)
outputTable["Quality_max_k_qual"] = unlist(qualMaxKsQuality)
outputTable["Global_optimal_k"] = unlist(optimalKs)
return(outputTable)
}
#' @title Comparison between two clusterings as plot.
#' plotMetricsClusterComparison
#' @aliases plotMetricsClusterComparison
#' @description
#' It plots a clustering comparison between two different
#' k-cluster vectors for a set of metrics.
#'
#' @inheritParams stability
#' @param k.vector1 Vector of positive integers representing \code{k} clusters.
#' The \code{k} values must be contained in [2,15] range.
#' @param k.vector2 Vector of positive integers representing \code{k} clusters.
#' The \code{k} values must be contained in [2,15] range.
#'
#' @return Nothing.
#'
#' @examples
#' # Using example data from our package
#' data("rnaMetrics")
#' stabilityData <- stabilityRange(data=rnaMetrics, k.range=c(2,4), bs=20, getImages = FALSE)
#' qualityData <- qualityRange(data=rnaMetrics, k.range=c(2,4), getImages = FALSE)
#' kOptTable = getOptimalKValue(stabilityData, qualityData)
#'
#'
plotMetricsClusterComparison <- function(data, k.vector1, k.vector2, seed=NULL) {
if (is.null(seed)) {
seed = pkg.env$seed
}
if (identical(k.vector1, k.vector2)) {
stop("k.vector1 and k.vector2 are identical")
}
data <- as.data.frame(SummarizedExperiment::assay(data))
numMetrics = length(colnames(data))-1
if (length(k.vector1) == 1) {
k.vector1=rep(k.vector1, numMetrics)
}
if (length(k.vector2) == 1) {
k.vector2=rep(k.vector2, numMetrics)
}
if (numMetrics != length(k.vector1) || numMetrics != length(k.vector2)
|| length(k.vector1) != length(k.vector2)) {
stop("Input parameters have different lengths")
}
for (i in 1:length(k.vector1)) {
checkKValue(k.vector1[i])
checkKValue(k.vector2[i])
}
data.metrics=NULL; names.metr=NULL; names.index=NULL;
k.cl=NULL; k.min=NULL; k.max=NULL;
data.metrics=NULL; datos.csv=NULL; datos.raw=NULL;
ranges=NULL; mins=NULL; data.l=NULL; data.ms=NULL; k.sig=NULL; k.op.sig=NULL;
datos.csv = data
data.metrics <- datos.csv[,-1]
names.metr <- colnames(datos.csv[,-1]) #nombres de metricas
names.ont <- datos.csv[,1]
ranges <- apply(data.metrics, 2, sample.range)
mins <- apply(data.metrics, 2, sample.min)
data.l <- sweep(data.metrics, 2, mins, FUN="-")
data.ms <- sweep(data.l, 2, ranges, FUN="/")
kcolors=c("black","red","blue","green","magenta","pink","yellow","orange","brown","cyan","gray","darkgreen")
par(mar=c(4,6,3,3))
plot(0,0, xlim=range(data.ms), ylim=c(0,length(names.metr)+1),
lwd=NULL, xlab="", ylab="", xaxt="n", yaxt="n", type="n")
axis(side=2, at = seq(1,length(names.metr)), labels=names.metr, las=2, cex.axis=.7)
title(xlab=paste("Scaled raw scores", sep=""), line=1)
title(ylab="Metrics", line=5)
for (i.metr in 1:length(names.metr)) { # i.metr= n de metrica #ejemplo
# i.metr=1
i=NULL; clusterk5=NULL; clusterkopt=NULL;
k.cl=NULL; k.op=NULL; data.plot=NULL;
i=i.metr
#kmeans with k.cl classes
k.cl=k.vector2[i]
set.seed(seed)
clusterk5=kmeans(data.ms[,i], centers=k.cl, iter.max = 100)
##
clusterk5$means=by(data.ms[,i],clusterk5$cluster,mean) #calcula las k medias (centroides)
for (i.5 in 1:length(clusterk5$means)) {
clusterk5$partition[which(clusterk5$cluster==i.5)]=clusterk5$centers[i.5]
#asigna valor centroide a todo miembro del cluster
}
#Ordenacion de la particion segun el sentido de la metrica (directa/inversa)
clusterk5$ordered=ordered(clusterk5$partition,labels=seq(1,length(clusterk5$centers)))
clusterk5$ordered.inv=ordered(clusterk5$partition,labels=seq(length(clusterk5$centers),1))
clusterk5$partition=clusterk5$ordered
clusterk5$means=sort(clusterk5$means,decreasing=FALSE)
#kmeans with k.op classes
k.op=k.vector1[i]
set.seed(seed)
clusterkopt=kmeans(data.ms[,i], centers=k.op, iter.max = 100)
clusterkopt$means=by(data.ms[,i],clusterkopt$cluster,mean) #calcula las k medias (centroides)
for (i.opt in 1:length(clusterkopt$means)) {
clusterkopt$partition[which(clusterkopt$cluster==i.opt)]=clusterkopt$centers[i.opt]
#asigna valor centroide a todo el cluster
}
clusterkopt$ordered=ordered(clusterkopt$partition,labels=seq(1,length(clusterkopt$centers)))
clusterkopt$ordered.inv=ordered(clusterkopt$partition,labels=seq(length(clusterkopt$centers),1))
clusterkopt$partition=clusterkopt$ordered
clusterkopt$means=sort(clusterkopt$means,decreasing=FALSE)
data.plot=data.frame(data.ms[,i],clusterk5$partition,clusterkopt$partition)
colnames(data.plot)=c(names.metr[i],"k=5","k_op")
rownames(data.plot)=names.ont
xi=data.plot[[1]]
yi=rep(i.metr,length(xi))
ci=data.plot[[2]]
ci=levels(ci)[ci]
points(xi,yi,type="p", col=kcolors[as.numeric(ci)],lty=1, lwd=1)
cj=data.plot[[3]]
for (ellip.j in unique(cj)) {
xj=mean(range(xi[which(cj==ellip.j)])) #clusterk5$means[ellip.j]
yj=rep(i.metr,length(xj))
aj=diff(range(xi[which(cj==ellip.j)]))/2
draw.ellipse(x=xj, y=yj, a=aj, b=0.3, nv=100,
border=kcolors[as.numeric(ellip.j)], lty=1, lwd=2)
}
} #end for i.metr
}
checkStabilityQualityData <- function(stabData, qualData) {
stabDf = assay(stabData) # Getting first assay, which is 'stabData$stability_mean'
lengthStabDf = length(colnames(stabDf)[-1])
stabRangeStart = gsub("^.*_.*_.*_","", colnames(stabDf)[-1][1]) # Mean_stability_k_2 -> 2
stabRangeEnd = gsub("^.*_.*_.*_","", colnames(stabDf)[-1][lengthStabDf])
lengthQual = length(qualData)
namesQual = names(qualData)
qualRangeStart = getFormattedK(namesQual[1]) # k_2 -> 2
qualRangeEnd = getFormattedK(namesQual[lengthQual])
if (stabRangeStart != qualRangeStart || stabRangeEnd != qualRangeEnd) {
stop("Stability data and quality data have different k ranges")
}
stabMetricsList = as.character(stabDf[,"Metric"])
qualMetricsList = as.character(
assay(getDataQualityRange(qualData, as.numeric(qualRangeStart)))[,"Metric"]
)
if (!identical(stabMetricsList, qualMetricsList)) {
stop("Stability data and quality data have different metrics")
}
}
#
# It transforms the output of qualityRange method
# into a dataframe like this:
# (rownames) k_2 k_3 k_4
# DegFact 0.6171262 0.6278294 0.4882649
# ...
# So that the input of getOptimalKValue has always a
# standardized dataframe to process.
#
standardizeQualityData <- function(qualData, k.range=NULL) {
lengthQuality = length(qualData)
qualRangeStart = getFormattedK(names(qualData)[1])
qualRangeEnd = getFormattedK(names(qualData)[lengthQuality])
Metric = NULL
kValues = list()
for (i in seq(qualRangeStart, qualRangeEnd, 1)) {
curQual = as.data.frame(assay(getDataQualityRange(qualData, i)))
if (i == qualRangeStart) {
Metric = as.character(curQual$Metric)
}
kValues[[i]] = as.numeric(as.character(curQual$Avg_Silhouette_Width))
}
qualDf = as.data.frame(Metric)
for (i in seq(qualRangeStart, qualRangeEnd, 1)) {
values = kValues[[i]]
newColname = paste0("k_", i)
k = as.numeric(getFormattedK(newColname))
if (!is.null(k.range) && (k < k.range[1] || k > k.range[2])) {
next
}
qualDf[[newColname]] = values
}
if (!is.null(k.range) && (k.range[1] < qualRangeStart || k.range[2] > qualRangeEnd)) {
# Input k.range is not a subset of the stabData k ranges
stop("Input k.range [", k.range[1], ", ", k.range[2], "] is not a subset of range [",
qualRangeStart, ", ", qualRangeEnd, "]")
}
rownames(qualDf) = qualDf$Metric
qualDf = qualDf[, -1] # Remove "Metric" column, metrics are rownames now
qualDf <- qualDf[ order(row.names(qualDf)), ]
return(qualDf)
}
#
# It transforms the output of stabilityRange method
# into a dataframe like this:
# (rownames) k_2 k_3 k_4
# RIN 0.6171262 0.6278294 0.4882649
# ...
# So that the input of getOptimalKValue has always a
# standardized dataframe to process.
#
standardizeStabilityData <- function(stabData, k.range=NULL) {
stabDf = as.data.frame(assay(stabData)) # Getting first assay, which is 'stabData$stability_mean'
lengthColnames = length(colnames(stabDf))
toRemove = list()
for (i in seq(1, lengthColnames, 1)) {
colname = colnames(stabDf)[i]
newColname = gsub("^.*_.*_.*_","k_", colname)
colnames(stabDf)[i] = newColname
if (i != 1) { # Skip Metric column
k = as.numeric(getFormattedK(newColname))
if (!is.null(k.range) && (k < k.range[1] || k > k.range[2])) {
toRemove = append(toRemove, newColname)
next
}
stabDf[newColname] = as.numeric(as.character(stabDf[[newColname]]))
}
}
for (columnName in toRemove) {
stabDf[, columnName] = list(NULL)
lengthColnames = lengthColnames-1
}
inputStartRange = as.numeric(getFormattedK(colnames(stabDf)[2]))
inputEndRange = as.numeric(getFormattedK(colnames(stabDf)[lengthColnames]))
if (!is.null(k.range) && (k.range[1] < inputStartRange || k.range[2] > inputEndRange)) {
# Input k.range is not a subset of the stabData k ranges
stop("Input k.range [", k.range[1], ", ", k.range[2], "] is not a subset of data range [",
inputStartRange, ", ", inputEndRange, "]")
}
rownames(stabDf) = stabDf$Metric
stabDf = stabDf[, -1] # Remove "Metric" column, metrics are rownames now
stabDf <- stabDf[ order(row.names(stabDf)), ]
return(stabDf)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.