Nothing
## optional functions
#' @noRd
GreedyHillClimber <- function(n, experiments, data2,
data0, mutants, init = NULL) {
cat("\n")
cat(n)
maxLlh <- -Inf
startModel <- CreateRandomGraph(experiments)
nonSelfEdges <- which(diag(nrow(startModel)) < 1)
##--- Iteratively update model and find highest scoring logics ---#
extendedModels <- includeLogic(startModel, experiments, mutants)
while (length(extendedModels)==0) {
startModel <- CreateRandomGraph(experiments)
extendedModels <- includeLogic(startModel, experiments, mutants)
}
extendedModels <- unlist(extendedModels, recursive=FALSE)
result <- sapply(extendedModels, Mll, data2, data0)
mLLscores <- unlist(result["mLL",])
score <- max(mLLscores)
if (is.null(init)) {
model <- startModel
} else {
model <- init
}
while (score > maxLlh) {
cat('.')
maxLlh <- score
prevModel <- model
nextGen <- FindNeighbours(model, nonSelfEdges)
extendedModels <- lapply(nextGen, includeLogic, experiments, mutants)
extendedModels2 <- unlist(unlist(extendedModels, recursive=FALSE),
recursive=FALSE)
result <- sapply(extendedModels2, Mll, data2, data0)
mll <- unlist(result["mLL",])
index <- which.max(mll)
score <- mll[index]
model <- extendedModels2[[index]]$origModel
}
return(list(maxLlh=maxLlh, model=prevModel))
}
#' @noRd
FindNeighbours <- function(model, edges) {
## Return all models that differ only one edge from the current model by
## removing or adding a non-self edge.
ChangeEdge <- function(edge, model) {
if (model[edge] == 1) {
model[edge] = 0
} else if (model[edge] == 0) {
model[edge] = 1
}
return(model)
}
models <- lapply(edges, ChangeEdge, model)
models <- unique(models)
return(models)
}
#' @noRd
EnumerateModels <- function(size, nodes=NULL) {
## Enumerates all possible adjacency matrices for a given size.
## Returns a list of
## all unique transitively closed adjacency matrices.
## Function adapted from NEM package
if (!size %in% 2:5) {
stop("Enumeration only feasible for networks up to 5 nodes.\n")
}
if (length(nodes) == 0) {
nodes <- LETTERS[1:size]
}
createModels <- function(bincom, size, nodes) {
model <- diag(size)
model[which(model == 0)] <- bincom
dimnames(model) <- list(nodes, nodes)
return(list(model))
}
asMatrix <- function(model, size, nodes) {
model <- matrix(model, size)
dimnames(model) <- list(nodes, nodes)
return(list(model))
}
bincom <- bincombinations(size * (size - 1))
models <- apply(bincom, 1, createModels, size, nodes)
models <- unique(matrix(unlist(models), ncol=size * size, byrow=TRUE))
models <- unlist(apply(models, 1, asMatrix, size, nodes), recursive=FALSE)
## cat("\nGenerated", length(models),
## "unique models out of", nrow(bincom), "\n")
return(models)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.