Nothing
## ----knitr, echo=FALSE, results="hide"----------------------------------------
library("knitr")
opts_chunk$set(tidy=FALSE,tidy.opts=list(width.cutoff=30),dev="pdf",
fig.width=7,fig.hight=5,
fig.show="hide",message=FALSE)
## ----style, eval=TRUE, echo=FALSE, results="asis"--------------------------
BiocStyle::latex()
## ----options, results="hide", echo=FALSE--------------------------------------
options(digits=3, width=80, prompt=" ", continue=" ")
## ----install_eegc, eval=FALSE-------------------------------------------------
# if (!requireNamespace("BiocManager", quietly=TRUE))
# install.packages("BiocManager")
# BiocManager::install("eegc")
## ----init_eegc, cache=FALSE, eval=TRUE,warning=FALSE--------------------------
library(eegc)
## ----load_data, eval=TRUE-----------------------------------------------------
# load Sandler's data set:
data(SandlerFPKM)
#the column names of the data, representing the samples CB, DMEC, and rEChMPP
colnames(SandlerFPKM)
## ----diff_analysis, eval=TRUE, warning=FALSE----------------------------------
# differential expression analysis:
diffgene = diffGene(expr = SandlerFPKM, array=FALSE, fpkm=TRUE, counts=FALSE,
from.sample="DMEC", to.sample="rEChMPP", target.sample="CB",
filter=TRUE, filter.perc =0.4, pvalue = 0.05 )
## ----diffresults, eval=TRUE, warning=FALSE------------------------------------
# differential analysis results
diffgene.result = diffgene[[1]]
# differential genes
diffgene.genes = diffgene[[2]]
#filtered expression data
expr.filter = diffgene[[3]]
dim(expr.filter)
dim(SandlerFPKM)
## ----gene_categorization, eval=TRUE-------------------------------------------
# categorizate differential genes from differential analysis
category = categorizeGene(expr = expr.filter,diffGene = diffgene.genes,
from.sample="DMEC",
to.sample="rEChMPP",
target.sample="CB")
cate.gene = category[[1]]
cate.ratio = category[[2]]
# the information of cate.gene
class(cate.gene)
length(cate.gene)
names(cate.gene)
head(cate.gene[[1]])
head(cate.ratio[[1]])
## ----markerScattera, eval = TRUE, echo=TRUE,fig.width =6, fig.height =6,dev="pdf"----
#load the marker genes of somatic and primary cells
data(markers)
#scatterplot
col = c("#abd9e9", "#2c7bb6", "#fee090", "#d7191c", "#fdae61")
markerScatter(expr = expr.filter, log = TRUE, samples = c("CB", "DMEC"),
cate.gene = cate.gene[2:4], markers = markers, col = col[2:4],
xlab = expression('log'[2]*' expression in CB (target)'),
ylab = expression('log'[2]*' expression in DMEC (input)'),
main = "")
## ----markerScatterb,eval = TRUE, echo=TRUE,fig.width =6, fig.height =6,dev="pdf"----
markerScatter(expr = expr.filter, log = TRUE, samples = c("CB", "rEChMPP"),
cate.gene = cate.gene[2:4], markers = markers, col = col[2:4],
xlab = expression('log'[2]*' expression in CB (target)'),
ylab = expression('log'[2]*' expression in rEC-hMPP (output)'),
main = "")
## ----markerScatterc,eval = TRUE, echo=TRUE,fig.width =6, fig.height =6,dev="pdf"----
markerScatter(expr = expr.filter, log = TRUE, samples = c("CB", "DMEC"),
cate.gene = cate.gene[c(1,5)], markers = markers, col = col[c(1,5)],
xlab = expression('log'[2]*' expression in CB (target)'),
ylab = expression('log'[2]*' expression in DMEC (input)'),
main = "")
## ----markerScatterd, eval = TRUE, echo=TRUE,fig.width =6,fig.height =6,dev="pdf"----
markerScatter(expr = expr.filter, log = TRUE, samples = c("CB", "rEChMPP"),
cate.gene = cate.gene[c(1,5)], markers = markers, col = col[c(1,5)],
xlab = expression('log'[2]*' expression in CB (target)'),
ylab = expression('log'[2]*' expression in rEC-hMPP (output)'),
main = "")
## ----densityPlot,eval=TRUE,fig.width=8,fig.height=5,dev="pdf"-----------------
# make the extreme ED ratios in Reversed and Over categories to the median values
reverse = cate.ratio[[1]]
over = cate.ratio[[5]]
reverse[reverse[,1] <= median(reverse[,1]), 1] = median(reverse[,1])
over[over[,1] >= median(over[,1]),1] = median(over[,1])
cate.ratio[[1]] = reverse
cate.ratio[[5]] = over
# density plot with quantified proportions
densityPlot(cate.ratio, xlab = "ED ratio", ylab = "Density", proportion = TRUE)
## ----functionEnrichment, eval=TRUE, warning = FALSE---------------------------
# result in "enrichResult" class by specifying TRUE to enrichResult parameter
goenrichraw = functionEnrich(cate.gene, organism = "human", pAdjustMethod = "fdr",
GO = TRUE, KEGG = FALSE, enrichResult = TRUE)
class(goenrichraw[[1]])
## ----functionEnrichment2, eval=FALSE, warning = FALSE-------------------------
# # result of the summary of "enrichResult" by specifying FALSE to enrichResult parameter
# # GO enrichment
# goenrich = functionEnrich(cate.gene, organism = "human", pAdjustMethod = "fdr",
# GO = TRUE, KEGG = FALSE, enrichResult = FALSE)
# # KEGG enrichment
# keggenrich = functionEnrich(cate.gene, organism = "human", pAdjustMethod = "fdr",
# GO = FALSE, KEGG = TRUE, enrichResult = FALSE)
## ----barplotEnrich,eval=TRUE,dev="pdf",fig.width=6,fig.height=3---------------
# plot only the "enrichResult" of Inactive category
inactive = goenrichraw[[2]]
barplotEnrich(inactive, top =5, color ="#2c7bb6", title = "Inactive")
## ----heatmapPlot,eval=TRUE,echo=TRUE,dev="pdf",fig.width=7,fig.heigth=7-------
# plot the enrichment results by the five gene categories
data(goenrich)
heatmaptable = heatmapPlot(goenrich, GO = TRUE, top = 5, filter = FALSE,
main = "Gene ontology enrichment",
display_numbers = FALSE)
## ----tissueheatmap, eval=TRUE,echo=TRUE,dev="pdf",fig.width=7,fig.height=8----
#load the cell/tissue-specific genes
data(tissueGenes)
length(tissueGenes)
head(names(tissueGenes))
#load the mapping file of cells/tissues to grouped cells/tissues
data(tissueGroup)
head(tissueGroup)
#get the background genes
genes = rownames(expr.filter)
#enrichment analysis for the five gene categories
tissueenrich = enrichment(cate.gene = cate.gene, annotated.gene = tissueGenes,
background.gene = genes, padjust.method = "fdr")
#select a group of cells/tissues
tissueGroup.selec = c("stem cells","B cells","T cells","Myeloid","Endothelial CD105+")
tissues.selec = tissueGroup[tissueGroup[,"Group"] %in% tissueGroup.selec,c(2,3)]
tissuetable = heatmapPlot(tissueenrich, terms = tissues.selec, GO=FALSE,
annotated_row = TRUE,annotation_legend = TRUE,
main = "Tissue-specific enrichment")
## ----dotpercentage, eval = TRUE, echo=TRUE,dev="pdf",fig.width=7,fig.height=5----
#load the C/T-specific genes in 16 cells/tissues
data(human.gene)
# the 16 cells/tissues
head(names(human.gene))
perc = dotPercentage(cate.gene = cate.gene, annotated.gene = human.gene,
order.by = "Successful")
## ----cellnetheatmap, eval = FALSE, echo=TRUE,dev="pdf"------------------------
# # CellNet C/T-specific enrichment analysis
# cellnetenrich = enrichment(cate.gene = cate.gene, annotated.gene = human.gene,
# background.gene = genes, padjust.method ="fdr")
# cellnetheatmap = heatmapPlot(cellnetenrich,
# main = "CellNet tissue specific enrichment")
## ----tfheatmap,eval=TRUE,echo=TRUE,fig.width=5,fig.height=6,dev="pdf"---------
# load transcription factor regulated gene sets from on CellNet data
data(human.tf)
tfenrich = enrichment(cate.gene = cate.gene, annotated.gene = human.tf,
background.gene = genes, padjust.method ="fdr")
tfheatmap = heatmapPlot(tfenrich, top = 5,
main = "CellNet transcription factor enrichment")
## ----networkanalyze,eval = TRUE,echo=TRUE-------------------------------------
# load the CellNet GRN
data(human.grn)
# specify a tissue-specifc network
tissue = "Hspc"
degree = networkAnalyze(human.grn[[tissue]], cate.gene = cate.gene,
centrality = "degree", mode ="all")
head(degree)
## ----grnPlot,eval = TRUE,echo=TRUE,dev="pdf",fig.width=6,fig.height=6---------
# select genes to shown their regulation with others
node.genes = c("ZNF641", "BCL6")
# enlarge the centrality
centrality.score = degree$centrality*100
names(centrality.score) = degree$Gene
par(mar = c(2,2,3,2))
grnPlot(grn.data = human.grn[[tissue]], cate.gene = cate.gene, filter = TRUE,
nodes = node.genes, centrality.score = centrality.score,
main = "Gene regulatory network")
## ----session_info, eval=TRUE--------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.