Nothing
#' Make multiplots of the data integration object
#'
#' @param x the fit
#' @param ... additional arguments, currently ignored
#' @param Dim the dimensions to be plotted
#' @param samDf a dataframe of sample variables
#' @param samCol A variable name from samDf used to colour the samples
#' @param samShape A variable name from samDf used to shape the samples
#' @param featurePlot A character string, either "threshold", "points" or
#' "density". See details
#' @param featCols Colours for the features
#' @param samColValues Colours for the samples
#' @param warnMonotonicity A boolean, should a warning be thrown when the
#' feature proportions of compositional views do not all vary monotonically
#' with all latent variables?
#' @param returnCoords A boolean, should coordinates be returned, e.g. for use
#' in thrird party software
#' @param squarePlot A boolean, should the axes be square? Strongly recommended
#' @param featAlpha Controls the transparacny of the features
#' @param featNum,varNum The number of features and variables to plot
#' @param manExpFactorTaxa,manExpFactorVar Expansion factors for taxa and
#' variables, normally calculated natively
#' @param featSize,crossSize,varSize,samSize,strokeSize Size parameters for
#' the features (text, dots or density contour lines), central cross, variable labels, sample dots, sample
#' strokes and feature contour lines
#' @param featShape Shape of feature dots when featurePlot = "points"
#' @param xInd,yInd x and y indentations
#' @param checkOverlap A boolean, should overlapping labels be omitted?
#' @param shapeValues the shapes, as numeric values
#'
#' @details It is usually impossible to plot all features with their labels.
#' Therefore, he default option of the 'featurePlot' parameter is "threshold",
#' whereby only the 'featNum" features furthest away from the origin are shown.
#' Alternatively, the "points" or "density" options are available to plot all
#' features as a point or density cloud, but without labels.
#'
#' @return A ggplot object containing the plot
#' @method plot combi
#'
#' @export
#' @import ggplot2
#' @importFrom grDevices terrain.colors
#' @importFrom stats quantile
#' @examples
#' data(Zhang)
#' \donttest{
#' #Unconstrained
#' microMetaboInt = combi(
#' list("microbiome" = zhangMicrobio, "metabolomics" = zhangMetabo),
#' distributions = c("quasi", "gaussian"), compositional = c(TRUE, FALSE),
#' logTransformGaussian = FALSE, verbose = TRUE)
#' #Constrained
#' microMetaboIntConstr = combi(
#' list("microbiome" = zhangMicrobio, "metabolomics" = zhangMetabo),
#' distributions = c("quasi", "gaussian"), compositional = c(TRUE, FALSE),
#' logTransformGaussian = FALSE, covariates = zhangMetavars, verbose = TRUE)}
#' #Load the fits
#' load(system.file("extdata", "zhangFits.RData", package = "combi"))
#' plot(microMetaboInt)
#' plot(microMetaboInt, samDf = zhangMetavars, samCol = "ABX")
#' #Plot all features as points or density
#' plot(microMetaboInt, samDf = zhangMetavars, samCol = "ABX",
#' featurePlot = "points")
#' plot(microMetaboInt, samDf = zhangMetavars, samCol = "ABX",
#' featurePlot = "density")
#' #Constrained
#' plot(microMetaboIntConstr, samDf = zhangMetavars, samCol = "ABX")
plot.combi = function(x, ..., Dim = c(1,2), samDf = NULL, samShape = NULL,
samCol = NULL, featurePlot = "threshold", featNum = 15L,
samColValues = NULL,
manExpFactorTaxa = 0.975, featSize = switch(featurePlot,
"threshold" = 2.5, "points" = samSize*0.7,
"density" = 0.35),
crossSize = 4, manExpFactorVar = 0.975, varNum = nrow(x$alphas),
varSize = 2.5, samSize = 1.75,
featCols = c("darkblue", "darkgreen", "grey10",
"turquoise4", "blue", "green", "grey",
"cornflowerblue", "lightgreen", "grey75"),
strokeSize = 0.05, warnMonotonicity = FALSE,
returnCoords = FALSE, squarePlot = TRUE, featAlpha = 0.5,
featShape = 20, xInd = 0, yInd = 0, checkOverlap = FALSE,
shapeValues = (21:(21+length(unique(samDf[[samShape]]))))){
if(length(featurePlot)!=1 ||
!(featurePlot %in% c("threshold", "points", "density"))){
stop("featurePlot should be either 'threshold', 'points', or 'density'!")
}
nViews = length(x$data)
coords = extractCoords(x, Dim)
latentData = coords$latentData; featureData = coords$featureData
varData = coords$varData
if(!is.null(samDf)){
latentData = data.frame(latentData, samDf[rownames(x$latentVars),, drop = FALSE])
}
DimChar = paste0("Dim", Dim)
if(!is.null(samShape)){
if(!(is.factor(samDf[[samShape]]) | is.character(samDf[[samShape]])))
stop("Shape must be a discrete variable!\n")
}
#### Latent variables ####
Plot = ggplot(aes_string(x = DimChar[1], y = DimChar[2], fill = samCol, shape = samShape), data = latentData) +
theme_bw() +
(if(!is.null(samColValues)) scale_fill_manual(values = samColValues, name = samCol))
if(!is.null(samShape)) {
Plot = Plot + scale_shape_manual(name = samShape, values = shapeValues) +
geom_point(size = samSize, stroke = strokeSize) +
guides(fill = guide_legend(override.aes = list(shape = 21)))}
else {
Plot = Plot+ geom_point(size = samSize, shape = 21, stroke = strokeSize)
}
#### Views ####
if(featurePlot == "threshold"){
if(length(featNum)==1){featNum = rep(featNum, nViews)}
checkComp = checkMonotonicity(x, Dim)
for(i in seq_len(nViews)){
if(featNum[i]==0) break
tmpDat = featureData[[i]]
featureData[[i]] = scaleCoords(tmpDat[, DimChar], latentData[, DimChar],
manExpFactorTaxa = manExpFactorTaxa,
featNum = featNum[i])
featureShow = featureData[[i]]$featNames
#Warn for non monotonicity in case of compositionality
if(warnMonotonicity && !all(checkComp[[i]][,featureShow])){
checkMate = apply(checkComp[[i]][, featureShow], c(1,2), all)
warning("Features \n", paste(colnames(x$data[[i]])[featureShow][
!apply(checkMate, 2 ,all)], collapse = "\n"),
"\nnot monotonous on this plot")
}
if(length(featCols[[i]])>1) featCols[[i]] = featCols[[i]][featureShow]
Plot = Plot + geom_text(aes_string(x = DimChar[1], y = DimChar[2],
label = "featNames"),
inherit.aes = FALSE, data = featureData[[i]],
col = featCols[[i]], size = featSize, alpha = featAlpha,
check_overlap = checkOverlap)
}
} else {
#Rescale
featureData = lapply(seq_along(featureData), function(i){
scaleCoords(featureData[[i]][, DimChar], latentData[, DimChar],
manExpFactorTaxa = manExpFactorTaxa)
})
#Stack all featureData
stackFeat = Reduce(featureData, f = rbind)
stackFeat$View = rep(names(x$data), times = vapply(x$data, ncol,
FUN.VALUE = integer(1)))
if(featurePlot == "points"){
Plot = Plot + geom_point(aes_string(x = DimChar[1], y = DimChar[2],
col = "View"),
inherit.aes = FALSE, data = stackFeat,
size = featSize, alpha = featAlpha, shape = featShape)
} else if(featurePlot == "density"){
Plot = Plot +
geom_density_2d(aes_string(col ="View", x = DimChar[1],
y = DimChar[2]),
data = stackFeat, inherit.aes = FALSE,
size = featSize, alpha = featAlpha)
}
}
Plot = Plot + scale_colour_manual(values = featCols) #Use manual colours
#### Gradient ####
if(!is.null(x$covariates)){
arrowLengthsVar = rowSums(varData[,DimChar]^2)
varPlot = arrowLengthsVar >= quantile(arrowLengthsVar, 1-varNum/nrow(x$alphas))
varData = varData[varPlot,]
scalingFactorTmpVar = apply(latentData[, DimChar], 2, range)/
apply(varData[,DimChar], 2, range)
scalingFactorVar = min(scalingFactorTmpVar[scalingFactorTmpVar >0]) *
manExpFactorVar
varData[,DimChar] = varData[,DimChar]*scalingFactorVar
Plot = Plot + geom_text(aes_string(x = DimChar[1], y = DimChar[2], label = "varNames"),
inherit.aes = FALSE, data = varData, size = varSize)
}
# Add cross in the centre
Plot = Plot + geom_point(data = data.frame(x = 0, y = 0),
aes_string(x = "x", y = "y"), size = crossSize,
inherit.aes = FALSE, shape = 3)
#Square plot, or throw warning
if(squarePlot){
Plot = Plot + coord_fixed()
} else {
warning("Plot not square! This may be misleading and is not recommended!
See squarePlot parameter.")
}
Plot = indentPlot(Plot, xInd = xInd, yInd = yInd) #Indentation
if(returnCoords){
return(list(Plot = Plot, latentData = latentData, featureData = featureData,
varData = varData))
} else {
return(Plot)
}
}
#' A helper function to rescale coordinates
#'
#' @param featCoords the feature coordinates to be rescaled
#' @param latentData latent variables
#' @param manExpFactorTaxa an expansion factor
#' @param featNum the number of features to retain
#'
#' @return The rescaled feature coordinates
scaleCoords = function(featCoords, latentData, manExpFactorTaxa,
featNum = NULL){
arrowLengths = rowSums(featCoords^2)
if(!is.null(featNum)){
featureShow = arrowLengths >= quantile(arrowLengths,
1-min(1,featNum/nrow(featCoords)))
featCoords = featCoords[featureShow,]
}
scalingFactorTmp = apply(latentData, 2, range)/
apply(featCoords, 2, range)
scalingFactor = min(scalingFactorTmp[scalingFactorTmp >0]) *
manExpFactorTaxa
data.frame(featCoords*scalingFactor, featNames = rownames(featCoords))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.