estFeatureParameters: Estimate the feature parameters

Description Usage Arguments Value

View source: R/estFeatureParameters.R

Description

Estimate the feature parameters

Usage

1
2
3
4
estFeatureParameters(paramEsts, lambdasParams, seqSets, data,
  distributions, offsets, nCores, m, JacFeatures, meanVarTrends,
  latentVars, numVars, control, weights, compositional, indepModels, fTol,
  allowMissingness, maxItFeat, ...)

Arguments

paramEsts

Current list of parameter estimates for the different views

lambdasParams

The lagrange multipliers

seqSets

A vector with view indices

data

A list of data matrices

distributions

A character vector describing the distributions

offsets

A list of offset matrices

nCores

The number of cores to use in multithreading

m

The dimension

JacFeatures

An empty Jacobian matrix

meanVarTrends

The mean-variance trends of the different views

latentVars

A vector of latent variables

numVars

The number of variables

control

A list of control arguments for the nleqslv function

weights

The normalization weights

compositional

A list of booleans indicating compositionality

indepModels

A list of independence model

fTol

A convergence tolerance

allowMissingness

A boolean indicating whether missing values are allowed

maxItFeat

An integer, the maximum number of iterations

...

Additional arguments passed on to the score and jacobian functions

Value

A vector with estimates of the feature parameters


combi documentation built on Nov. 8, 2020, 5:34 p.m.